Skip to main content
Log in

Local dielectric environment-dependent plasmonic optical sensitivity of gold nanocage: from nanobox to nanoframe

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, a gold nanobox with 40 nm edge length has been transformed into nanoframe gradually by increasing the square-hole length in each {100} facet of the hexahedron. The local dielectric environment-dependent plasmon spectra and refractive index sensitivity of this face-holed single gold nanocage were investigated based on the discrete dipole approximation method. Both the redshift of the resonance peak position and the sensitivity factor increased near exponentially with increasing hole length, which could be attributed to the changing of hot regions of plasmonic field coupling. Moreover, the shift of their resonance peak position to the refractive index of environmental medium increased linearly, and the face-holed nanocage-based sensor shows an excellent sensitivity factor of 955.7 nm/RIU [figure of merit (FOM) = 3.58]. It was also noticed that the non-monotonic transform of the local field enhancement factor (|E/E0|) with a maximum of 80.9 is also extremely affected by the refractive index. The physical mechanism discussed herein may be that the polarized field in local dielectric environment becomes intense as the refractive index increases, resulting in an improvement of field enhancement factor on the corners. We therefore believe that the square-hole length of {100} facets could enhance the plasmonic optical sensitivity of nanocage-based nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. C.H. Zhang, J. Zhu, J.J. Li, J.W. Zhao, J. Appl. Phys. 117, 063102 (2015)

    Article  ADS  Google Scholar 

  2. A. Derkachova, K. Kolwas, I. Demchenko, Plasmonics 11, 941 (2016)

    Article  Google Scholar 

  3. C.L. Nehl, J.H. Hafner, J. Mater. Chem. 18, 2415 (2008)

    Article  Google Scholar 

  4. E. Ringe, J.M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G.C. Schatz, L.D. Marks, R.P. Van Duyne, J. Phys. Chem. C 114, 12511 (2010)

    Article  Google Scholar 

  5. J. Zhu, X.C. Deng, Sens. Actuators B 155, 843 (2011)

    Article  Google Scholar 

  6. S.J. Zalyubovskiy, M. Bogdanova, A. Deinega, Y. Lozovik, A.D. Pris, K.H. An, W.P. Hall, R.A. Potyrailo, J. Opt. Soc. Am. A 29, 994 (2012)

    Article  ADS  Google Scholar 

  7. H. Chatterjee, S.K. Ghosh, J. Phys. Chem. C 121, 22310 (2017)

    Article  Google Scholar 

  8. J. Zhu, F. Zhang, J.J. Li, J.W. Zhao, Sens. Actuators B 183, 556 (2013)

    Article  Google Scholar 

  9. E. Kazuma, T. Tatsuma, Nanoscale 6, 2397 (2014)

    Article  ADS  Google Scholar 

  10. D. Ramaccia, S. Arcieri, A. Toscano, F. Bilotti, IEEE J. Sel. Top. Quantum Electron 23, 6900408 (2017)

    Article  Google Scholar 

  11. Y. Su, T. Peng, F. Xing, D. Li, C. Fan, Acta Chim. Sin. 75, 1036 (2017)

    Article  Google Scholar 

  12. C. Du, M. Huang, T. Chen, F. Sun, B. Wang, C. He, D. Shi, Sens. Actuators B 203, 812 (2014)

    Article  Google Scholar 

  13. Y. Zhang, D.E. Charles, D.M. Ledwith, D. Aherne, S. Cunningham, M. Voisin, W.J. Blau, Y.K. Gun’ko, J.M. Kelly, M.E. Brennan-Fournet, RSC Adv. 4, 29022 (2014)

    Article  Google Scholar 

  14. N. Hooshmand, J.A. Bordley, M.A. El-Sayed, J. Phys. Chem. C 119, 15579 (2015)

    Article  Google Scholar 

  15. Y.G. Sun, Y.N. Xia, Science 298, 2176 (2002)

    Article  ADS  Google Scholar 

  16. N. Hooshmand, S.R. Panikkanvalappil, M.A. El-Sayed, J. Phys. Chem. C 120, 20896 (2016)

    Article  Google Scholar 

  17. C.H. Zhang, J. Zhu, J.J. Li, J.W. Zhao, ACS Appl. Mater. Interfaces 9, 17387 (2017)

    Article  Google Scholar 

  18. Y. Qi, J. Zhu, J. Li, J. Zhao, J. Nanopart. Res. 18, 190 (2016)

    Article  ADS  Google Scholar 

  19. Y.G. Sun, Y.N. Xia, J. Am. Chem. Soc. 126, 3892 (2004)

    Article  Google Scholar 

  20. M.A. Mahmoud, B. Snyder, M.A. El-Sayed, J. Phys. Chem. C 114, 7436 (2010)

    Article  Google Scholar 

  21. L. Au, Y. Chen, F. Zhou, P.H.C. Camargo, B. Lim, Z.Y. Li, D.S. Ginger, Y. Xia, Nano Res. 1, 441 (2008)

    Article  Google Scholar 

  22. J.W. Liaw, J.C. Cheng, C. Ma, R. Zhang, J. Phys. Chem. C 117, 19586 (2013)

    Google Scholar 

  23. Z.P. Zhang, Y. Wang, S.H. Xu, Y.N. Yu, A. Hussain, Y.Y. Shen, S.R. Guo, J. Mater. Chem. B 5, 5464 (2017)

    Article  Google Scholar 

  24. R.A. Soomro, O.P. Akyuz, R. Ozturk, Z.H. Ibupoto, Sens. Actuators B 233, 230 (2016)

    Article  Google Scholar 

  25. W. Wang, X.S. Hou, X. Li, C. Chen, X.L. Luo, Anal. Chim. Acta 998, 45 (2018)

    Article  ADS  Google Scholar 

  26. G. Raschke, S. Brogl, A.S. Susha, A.L. Rogach, T.A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, K. Kürzinger, Nano Lett. 4, 1853 (2004)

    Article  ADS  Google Scholar 

  27. C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, S. Xiao, Opt. Commun. 436, 57 (2019)

    Article  ADS  Google Scholar 

  28. C.L. Cen, J.J. Chen, C.P. Liang, J. Huang, X.F. Chen, Y.J. Tang, Z. Yi, X.B. Xu, Y.G. Yi, S.Y. Xiao, Physica E 103, 93 (2018)

    Article  ADS  Google Scholar 

  29. Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, Y. Yi, Nanomaterials 8, 0568 (2018)

    Article  Google Scholar 

  30. E. Martinsson, M.M. Shahjamali, N. Large, N. Zaraee, Y. Zhou, G.C. Schatz, C.A. Mirkin, D. Aili, Small 12, 330 (2016)

    Article  Google Scholar 

  31. L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, R.P. Van Duyne, Nano Lett. 6, 2060 (2006)

    Article  ADS  Google Scholar 

  32. H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Langmuir 24, 5233 (2008)

    Article  Google Scholar 

  33. M.A. Mahmoud, M.A. El-Sayed, J. Am. Chem. Soc. 132, 12704 (2010)

    Article  Google Scholar 

  34. M.A. Mahmoud, M.A. El-Sayed, Nano Lett. 9, 3025 (2009)

    Article  ADS  Google Scholar 

  35. M.A. Mahmoud, J. Phys. Chem. C 118, 10321 (2014)

    Article  Google Scholar 

  36. J.S. Sekhon, S.S. Verma, J. Mod. Opt. 62, 435 (2015)

    Article  ADS  Google Scholar 

  37. M.H. Tu, T. Sun, K.T.V. Grattan, Sens. Actuators B 191, 37 (2014)

    Article  Google Scholar 

  38. Y.G. Sun, Y.N. Xia, Anal. Chem. 74, 5297 (2002)

    Article  Google Scholar 

  39. M. Hu, J.Y. Chen, M. Marquez, Y.N. Xia, G.V. Hartland, J. Phys. Chem. C 111, 12558 (2007)

    Article  Google Scholar 

  40. A.A. Ashkarran, S. Daemi, Plasmonics 11, 1011 (2015)

    Article  Google Scholar 

  41. M. Cao, M. Wang, N. Gu, J. Phys. Chem. C 113, 1217 (2009)

    Article  Google Scholar 

  42. C.M. Ma, R.F. Zhang, J.W. Liaw, J.C. Cheng, Appl. Phys. A 115, 31 (2014)

    Article  ADS  Google Scholar 

  43. M.J. Collinge, B.T. Draine, J. Opt. Soc. Am. A 21, 2023 (2004)

    Article  ADS  Google Scholar 

  44. M.A. Yurkin, A.G. Hoekstra, J. Quant. Spectrosc. Radiat. Transf. 106, 558 (2007)

    Article  ADS  Google Scholar 

  45. B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 25, 2693 (2008)

    Article  ADS  Google Scholar 

  46. P.J. Flatau, B.T. Draine, Opt. Express 20, 1247 (2012)

    Article  ADS  Google Scholar 

  47. I.O. Sosa, C. Noguez, R.G. Barrera, J. Phys. Chem. B 107, 6269 (2003)

    Article  Google Scholar 

  48. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  49. E.A. Coronado, G.C. Schatza, J. Chem. Phys. 119, 3926 (2003)

    Article  ADS  Google Scholar 

  50. S. Link, M.A. El-Sayed, J. Phys. Chem. B 103, 4212 (1999)

    Article  Google Scholar 

  51. R.D. Averitt, S.L. Westcott, N.J. Halas, J. Opt. Soc. Am. B Opt. Phys. 16, 1824 (1999)

    Article  ADS  Google Scholar 

  52. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.Y. Li, H. Zhang, Y. Xia, X. Li, Nano Lett. 7, 1318 (2007)

    Article  ADS  Google Scholar 

  53. P.K. Jain, M.A. Ei-Sayed, J. Phys. Chem. C 111, 17451 (2007)

    Article  Google Scholar 

  54. J. Zhu, J. Nanopart. Res. 13, 87 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant no. 11774283.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhu or Jun-Wu Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2720 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Chen, JK., Li, JJ. et al. Local dielectric environment-dependent plasmonic optical sensitivity of gold nanocage: from nanobox to nanoframe. Appl. Phys. A 125, 62 (2019). https://doi.org/10.1007/s00339-018-2353-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2353-3

Navigation