Skip to main content
Log in

Electronic structure, magnetism properties and optical absorption of organometal halide perovskite CH3NH3XI3 (X = Fe, Mn)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electronic structure, magnetism properties and optical absorption of organometal halide perovskite CH3NH3XI3 (X = Fe, Mn) are studied using the first principles calculations by the generalized gradient approximation (GGA) and the GGA + U method, respectively. The magnetic ground states of CH3NH3MnI3 and CH3NH3FeI3 are both the G-type antiferromagnetic (AFM) order. With the introduction of on-site Coulomb interactions U, CH3NH3FeI3 shows the semiconducting phase from original metallic state predicted by the GGA method. The band gap value of CH3NH3MnI3 with the G-AFM state is 1.68 eV, while the band gap in the spin majority channel is 0.694 eV and the band gap in the spin minority channel is 2.147 eV when system is in FM state. For CH3NH3FeI3 system, the band gap is 0.957 eV when system is in G-AFM state, while the band gap in the spin majority channel is 0.602 eV and the band gap in the spin minority channel is 1.215 eV when system is in FM state, which shows that photo-excited electrons of CH3NH3MnI3 and CH3NH3FeI3 with FM state will rapidly melt the local magnetic order. Furthermore, the optical properties of CH3NH3MnI3 and CH3NH3FeI3 are calculated. CH3NH3MnI3 with the FM state shows strong infrared light absorption. CH3NH3FeI3 with FM state have stronger infrared absorption than that in G-AFM state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.A. Loi, J.C. Hummelen, Hybrid solar cells: perovskites under the Sun. Nat. Mater. 12, 1087 (2013). https://doi.org/10.1038/nmat3815

    Article  ADS  Google Scholar 

  2. S. Kazim, M.K. Nazeeruddin, M. Grätzel, S. Ahmad, ChemInform abstract: perovskite as light harvester: a game changer in photovoltaics. Angew. Chem. Int. Ed. 53, 2 (2014). https://doi.org/10.1002/anie.201308719

    Article  Google Scholar 

  3. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009) https://doi.org/10.1021/ja809598r

    Article  Google Scholar 

  4. L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396 (2012). https://doi.org/10.1021/ja307789s

    Article  Google Scholar 

  5. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012). https://doi.org/10.1126/science.1228604

    Article  ADS  Google Scholar 

  6. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591

    Article  Google Scholar 

  7. M.Z. Liu, M.B. Johnston, and H. J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013). https://doi.org/10.1038/nature12509

    Article  ADS  Google Scholar 

  8. E. Mosconi, A. Amat, M.K. Nazeeruddin, M.Gratzel and F. De Angelis, First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117, 13902 (2013). https://doi.org/10.1021/jp4048659

    Article  Google Scholar 

  9. C. Wehrenfennig, M. Liu, H.J. Snaith, M.B. Johnston, L.M. Herz, Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3–xClx. J. Phys. Chem. Lett. 5, 1300 (2014). https://doi.org/10.1021/jz500434p

    Article  Google Scholar 

  10. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013). https://doi.org/10.1038/nature12340

    Article  ADS  Google Scholar 

  11. H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 345, 542 (2014). https://doi.org/10.1038/nature12340

    Article  ADS  Google Scholar 

  12. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014). https://doi.org/10.1038/nphoton.2014.134

    Article  ADS  Google Scholar 

  13. N.J. Jeon, H.G. Lee, Y.C. Kim, J. Seo, J.H. Noh, J. Lee, S.I. Seok, o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. J. Am. Chem. Soc. 136, 7837 (2014). https://doi.org/10.1021/ja502824c

    Article  Google Scholar 

  14. J. Feng, B. Xiao, C. Structures, Optical properties, and effective mass tensors of CH3NH3PbX3 (X = I and Br) phases predicted from HSE06. J. Phys. Chem. Lett. 5, 1278 (2014). https://doi.org/10.1021/jz500480m

    Article  Google Scholar 

  15. M. Grätzel, The light and shade of perovskite solar cells. Nat. Mater. 13, 838 (2014). https://doi.org/10.1038/nmat4065

    Article  ADS  Google Scholar 

  16. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energ. Environ. Sci. 7, 399 (2014). https://doi.org/10.1039/C3EE43161D

    Article  Google Scholar 

  17. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013). https://doi.org/10.1126/science.1243982

    Article  ADS  Google Scholar 

  18. B. Cai, Y. Xing, Z. Yang, W. Zhang, J. Qiu, High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 6, 1480 (2013). https://doi.org/10.1039/C3EE40343B

    Article  Google Scholar 

  19. H.X. Zhu, J.-M. Liu, Electronic structure of organometal halide perovskite CH3NH3BiI3 and optical absorption extending to infrared region. Sci. Rep. 6, 37425 (2016). https://doi.org/10.1038/srep37425

    Article  ADS  Google Scholar 

  20. N. Nuraje, K. Su, Perovskite ferroelectric nanomaterials. Nanoscale 5, 8752 (2013). https://doi.org/10.1039/c3nr02543h

    Article  ADS  Google Scholar 

  21. B. Huang, G. Kong, E.N. Esfahani, S. Chen, Q. Li, J. Yu, N. Xu, Y. Zhang, S. Xie, H. Wen, P. Gao, J. Zhao, J. Li, Ferroic domains regulate photocurrent in single-crystalline CH3NH3PbI3 films self-grown on FTO/TiO2 substrate. npj Quantum Mater. 3, 30 (2018). https://doi.org/10.1038/s41535-018-0104-5

    Article  ADS  Google Scholar 

  22. J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. Schilfgaarde, A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584 (2014). https://doi.org/10.1021/nl500390f

    Article  ADS  Google Scholar 

  23. R. Gottesman, E. Haltzi, L. Gouda, S. Tirosh, Y. Bouhadana, A. Zaban, E. Mosconi, F.D. Angelis, Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J. Phys. Chem. Lett. 5, 2662 (2014). https://doi.org/10.1021/jz501373f

    Article  Google Scholar 

  24. M. Coll, A. Gomez, E. Mas-Marza, O. Almora, G. Garcia-Belmonte, Campoy-Quile, M. Bisquer, Polarization switching and light-enhanced piezoelectricity in lead halide perovskites. J. Phys. Chem. Lett. 6, 1408 (2015). https://doi.org/10.1021/acs.jpclett.5b00502

    Article  Google Scholar 

  25. K. Gesi, Effect of hydrostatic pressure on the structural phase transitions in CH3NH3PbX3 (X = Cl, Br, I). Ferroelectrics 203, 249 (1997). https://doi.org/10.1080/00150199708012851

    Article  Google Scholar 

  26. K. Frost, T. Butler, F. Brivio, C.H. Hendon, M.V. Schilfgaarde, A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584 (2014). https://doi.org/10.1021/nl500390f

    Article  ADS  Google Scholar 

  27. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019 (2013). https://doi.org/10.1021/ic401215x

    Article  Google Scholar 

  28. C. Quarti, E. Mosconi, F.D. Angelis, Interplay of orientational order and electronic structure in methylammonium lead iodide: implications for solar cell operation. Chem. Mater. 26, 6557 (2014). https://doi.org/10.1021/cm5032046

    Article  Google Scholar 

  29. A. Stroppa, C. Quarti, F.D. Angelis, S. Picozzi, Ferroelectric polarization of CH3NH3PbI3: a detailed study based on density functional theory and symmetry mode analysis. J. Phys. Chem. Lett. 6, 2223 (2015). https://doi.org/10.1021/acs.jpclett.5b00542

    Article  Google Scholar 

  30. J. Beilsten-Edmands, G.R. Eperon, R.D. Johnson, H.J. Snaith, P.G. Radaelli, Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices. Appl. Phys. Lett. 106, 173502 (2015). https://doi.org/10.1063/1.4919109

    Article  ADS  Google Scholar 

  31. B. Náfrádi, P. Szirmai, M. Spina, H. Lee, O.V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forró, E. Horváth, Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3, Nat. Commun. 7, 13406 (2016). https://doi.org/10.1038/ncomms134

    Article  Google Scholar 

  32. M. Johnson, R.H. Silsbee, Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790 (1985). https://doi.org/10.1103/PhysRevLett.55.1790

    Article  ADS  Google Scholar 

  33. G. Prinz, Hybrid ferromagnetic-semiconductor structures. Science 250, 1092 (1990). https://doi.org/10.1126/science.250.4984.1092

    Article  ADS  Google Scholar 

  34. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  35. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, R558 (1993). https://doi.org/10.1103/PhysRevB.47.558

    Article  ADS  Google Scholar 

  36. L.G. Devi, B.N. Murthy, S.G. Kumar, Photocatalytic activity of V5+, Mo6+ and Th4+ doped polycrystalline TiO2 for the degradation of chlorpyrifos under UV/solar light.J. Mol. Catal. A Chem. 308, 174 (2009). https://doi.org/10.1016/j.molcata.2009.04.007

    Article  Google Scholar 

  37. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  ADS  Google Scholar 

  38. W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). https://doi.org/10.1063/1.4864778

    Article  ADS  Google Scholar 

  39. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  MathSciNet  ADS  Google Scholar 

  40. L.P.J. Even, J.-M. Jancu, C. Katan, Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999 (2013). https://doi.org/10.1021/jz401532q

    Article  Google Scholar 

  41. X. Han, G. Shao, Electronic properties of rutile TiO2 with nonmetal dopants from first principles. J. Phys. Chem. C 115, 8274 (2011). https://doi.org/10.1021/jp1106586

    Article  Google Scholar 

  42. G. Shao, Electronic structures of manganese-doped rutile TiO2 from first principles. J. Phys. Chem. C 112, 18677 (2008). https://doi.org/10.1021/jp8043797

    Article  Google Scholar 

  43. D.O. Scanlon, B.J. Morgan, G.W. Watson, A. Walsh, Acceptor levels in p-type Cu2O: rationalizing theory and experiment. Phys. Rev. Lett. 103, 096405 (2009). https://doi.org/10.1103/PhysRevLett.103.096405

    Article  ADS  Google Scholar 

  44. M. Nolan, G.W. Watson, Hole localization in Al doped silica: a DFT + U description. J. Chem. Phys. 125, 14470 (2006). https://doi.org/10.1063/1.2354468

    Article  Google Scholar 

  45. A. Maalej, Y. Abid, A. Kallel, A. Daoud, A. Lautie, F. Romain, Phase transitions and crystal dynamics in the cubic perovskite CH3NH3PbCl3. Solid State Commun. 103, 279 (1997). https://doi.org/10.1016/S0038-1098(97)00199-3

    Article  ADS  Google Scholar 

  46. Y. Kawamura, H. Mashiyama, K. Hasebe, Structural study on cubic tetragonal transition of CH3NH3PbI3. J. Phys. Soc. Jpn. 71, 1694 (2002). https://doi.org/10.1143/JPSJ.71.1694

    Article  ADS  Google Scholar 

  47. H.X. Zhu, J.-M. Liu, First principles calculations of electronic and optical properties of Mo and C co-doped anatase TiO2. Appl. Phys. A 117, 831 (2014). https://doi.org/10.1007/s00339-014-8433-0

    Article  Google Scholar 

  48. D.B. Melrose, R.J. Stoneham, Generalized Kramers–Kronig formula for spatially dispersive media. J. Phys. A Math. Gen. 10, L17 (1977). http://stacks.iop.org/0305-4470/10/i=1/a=004

  49. Y. Fang, D.J. Cheng, M. Niu, Y.J. Yi, W. Wu, Tailoring the electronic and optical properties of rutile TiO2 by (Nb + Sb, C) codoping from DFT + U calculations. Chem. Phys. Lett. 567, 34 (2013). https://doi.org/10.1016/j.cplett.2013.02.070

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grants no. 11704326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. X. Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H.X., Wang, X.H. & Zhuang, G.C. Electronic structure, magnetism properties and optical absorption of organometal halide perovskite CH3NH3XI3 (X = Fe, Mn). Appl. Phys. A 125, 45 (2019). https://doi.org/10.1007/s00339-018-2347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2347-1

Navigation