Skip to main content
Log in

Fabrication of perforated polyethylene microfiltration membranes for circulating tumor cells separation by thermal nanoimprint method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Size-based filtration has been proved an efficient and quick approach to separate circulating tumor cells (CTCs) from other blood cells for cancer diagnosis and therapy monitoring. In this work, we proposed a simple, cost efficient and scalable approach to fabricate microporous polyethylene (PE) membranes for CTC filtration by thermal nanoimprint method. PE was selected as the material for the membrane due to its commercially available films with a thickness as thin as ~ 10 µm, which is matched well with the size of the micropores for CTCs and critical to a successful nanoimprint with a low and uniform residual layer. A thermal imprint process with a nickel mold was applied to fabricate periodic microporous PE membranes with a pitch of 20 µm and diameter of 10 µm. The perforated micropores were obtained by a short time O2 plasma-etching to remove the imprint residual layer. This PE membrane microfilter achieved 84% average capture efficiency for lung cancer cells spiked in blood samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Cristofanilli, G.T. Budd, M.J. Ellis, A. Stopeck, J. Matera, M.C. Miller, J.M. Reuben, G.V. Doyle, W.J. Allard, L.W. Terstappen, D.F. Hayes, N. Engl. J. Med. 351, 781 (2004)

    Article  Google Scholar 

  2. C.L. Chaffer, R.A. Weinberg, Science 331, 1559 (2011)

    Article  ADS  Google Scholar 

  3. P. Paterlini-Brechot, N.L. Benali, Cancer Lett. 253, 180 (2007)

    Article  Google Scholar 

  4. Y.T. Kang, I. Doh, Y.H. Cho, Biomed. Microdevices 17, 45 (2015)

    Article  Google Scholar 

  5. S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Nature 450, 1235 (2007)

    Article  ADS  Google Scholar 

  6. S. Riethdorf, H. Fritsche, V. Muller, T. Rau, C. Schindlbeck, B. Rack, W. Janni, C. Coith, K. Beck, F. Janicke, S. Jackson, T. Gornet, M. Cristofanilli, K. Pantel, Clin. Cancer Res. 13, 920 (2007)

    Article  Google Scholar 

  7. R. Rosenberg, R. Gertler, J. Friederichs, K. Fuehrer, M. Dahm, R. Phelps, S. Thorban, H. Nekarda, J. R. Siewer, Cytometry 49, 150 (2002)

    Article  Google Scholar 

  8. G. Vona, A. Sabile, M. Louha, V. Sitruk, S. Romana, K. Schütze, F. Capron, D. Franco, M. Pazzagli, M. Vekemans, B. Lacour, C. Bréchot, P. Paterlini-Bréchot, Am. J. Pathol. 156, 57 (2000)

    Article  Google Scholar 

  9. S. Zheng, H. Lin, J.Q. Liu, M. Balic, R. Datar, R.J. Cote, Y.C. Tai, J. Chromatogr. A 1162, 154 (2007)

    Article  Google Scholar 

  10. T. Xu, B. Lu, Y.C. Tai, A. Goldkorn, Cancer Res. 70, 6420 (2010)

    Article  Google Scholar 

  11. M. Hosokawa, T. Yoshikawa, R. Negishi, T. Yoshino, Y. Koh, H. Kenmotsu, T. Naito, T. Takahashi, N. Yamamoto, Y. Kikuhara, H. Kanbara, T. Tanaka, K. Yamaguchi, T. Matsunaga, Anal. Chem. 85, 5692 (2013)

    Article  Google Scholar 

  12. J.A. Hernandez-Castro, K. Li, A. Meunier, D. Juncker, T. Veres, Lab Chip 17, 1960 (2017)

    Article  Google Scholar 

  13. X. Fan, C. Jia, J. Yang, G. Li, H. Mao, Q. Jin, J. Zhao, Biosens. Bioelectro. 71, 380 (2015)

    Article  Google Scholar 

  14. S.C. Ligon-Auer, M. Schwentenwein, C. Gorsche, J. Stampfl, R. Liska, Polym. Chem. 7, 257 (2016)

    Article  Google Scholar 

  15. Y. Cui, J. Lu, X. Fu, J. Bian, C. Yuan, H. Ge, Y. Chen, Appl. Phys. A 121, 371 (2015)

    Article  ADS  Google Scholar 

  16. H. Schift, S. Bellini, J. Gobrecht, Microelectron. Eng. 83, 873 (2006)

    Article  Google Scholar 

  17. Y. Hirai, S. Harada, S. Isaka, M. Kobayashi, Y. Tanaka, Jpn. J. Appl. Phys. 41, 4186 (2002)

    Article  ADS  Google Scholar 

  18. S. Park, Microelectron. Eng. 73, 196 (2004)

    Article  Google Scholar 

  19. S.-W. Youn, H. Goto, M. Takahashi, S. Oyama, Y. Oshinomi, K. Matsutani, R. Maeda, J. Micromech. Microeng. 17, 1402 (2007)

    Article  ADS  Google Scholar 

  20. S. Zheng, H.K. Lin, B. Lu, A. Williams, R. Datar, R.J. Cote, Y.C. Tai, Biomed. Microdevices 13, 203 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Nature Science Foundation of China (Grant No. 51473076) and the National Key R&D Program of China (Grant No. 2018YFB1105400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixiong Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, F., Shao, Z., Ni, M. et al. Fabrication of perforated polyethylene microfiltration membranes for circulating tumor cells separation by thermal nanoimprint method. Appl. Phys. A 125, 55 (2019). https://doi.org/10.1007/s00339-018-2343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2343-5

Navigation