Skip to main content
Log in

Effects of Zr substitution on microstructure and microwave dielectric properties of Zn(Ti1−xZrx)Nb2O8 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zn(Ti1−xZrx)Nb2O8(x = 0, 0.2, 0.4, 0.5, 0.6) ceramics were prepared by conventional solid-state reaction process. The effects of Zr substitution for Ti on the phase composition, microstructure, and the microwave dielectric properties of Zn(Ti1−xZrx)Nb2O8 ceramics were investigated by using X-ray diffraction and scanning electron microscopy. The phase transition from ZnTiNb2O8 to ZnZrNb2O8 occurred at x = 0.5. The grain size decreased and the distribution of grain size was more homogeneous with increasing x. While εr and τf decreased slightly, a great improvement in Q × f value was obtained by the promoted densification and the uniform grains. The best combination of microwave dielectric characteristics was obtained for the composition of x = 0.4 and sintered at 1120 °C for 6 h: dielectric constant εr was 33.43, quality factor Q × f reaches 59,475 GHz, and the temperature coefficient of the resonant frequency τf was − 76.54 × 10−6/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    Google Scholar 

  2. H. Ohsato, Functional advances of microwave dielectrics for next generation. Ceram. Int. 38, S141–S146 (2012)

    Article  Google Scholar 

  3. S. Joseph, M.K. Suresh, J.K. Thomas, A. John, S. Solomon, Synthesis, characterization and spectroscopic analysis of NdxY1–xTiNbO6 microwave ceramics. Int. J. Appl. Ceram. Technol. 7, E129–E134 (2010)

    Article  Google Scholar 

  4. L. Fang, H. Zhang, Q. Yu, H.P. Su, B.L. Wu, X.M. Cui, Sr3LaNb3O12: a new low loss and temperature stable A4B3O12-type microwave dielectric ceramic. J. Am. Ceram. Soc. 92, 556–558 (2009)

    Article  Google Scholar 

  5. D. Pamu, G.L.N. Rao, K.C.J. Raju, Enhanced microwave dielectric properties of (Zr0.8,Sn0.2)TiO4 ceramics with the addition of its own nanoparticles. J. Am. Ceram. Soc. 95, 126–132 (2012)

    Article  Google Scholar 

  6. P.P. Ma, X.Q. Liu, F.Q. Zhang, J.J. Xing, X.M. Chen, Sr(Ga0.5Nb0.5)1–xTixO3 low-loss microwave dielectric ceramics with medium dielectric constant. J. Am. Ceram. Soc. 98, 2534–2540 (2015)

    Article  Google Scholar 

  7. G.R. Ren, J.Y. Zhu, L. Li, B. Liu, X.M. Chen, SrLa(R0.5Ti0.5)O4 (R = Mg, Zn) microwave dielectric ceramics with complex K2NiF4-type layered perovskite structure. J. Am. Ceram. Soc. 00, 1–8 (2017)

    Google Scholar 

  8. D.W. Kim, D.Y. Kim, K.S. Hong, Phase relations and microwave dielectric properties of ZnNb2O6–TiO2. J. Mater. Res. 15, 1331–1335 (2000)

    Article  ADS  Google Scholar 

  9. Q.W. Liao, L.X. Li, Structural dependence of microwave dielectric properties of ixiolite structured ZnTiNb2O8 materials: crystal structure refinement and Raman spectra study. Dalton Trans. 41, 6963 (2012)

    Article  Google Scholar 

  10. Z.L. Huan, Q.C. Sun, W.B. Ma, L.J. Wang, F. Xiao, T.K. Chen, Crystal structure and microwave dielectric properties of (Zn1−xCox)TiNb2O8 ceramics. J. Alloys Compd. 551, 630–635 (2013)

    Article  Google Scholar 

  11. T.K. Chen, W.B. Ma, Q.C. Sun, C.C. Tang, Z.L. Huan, B.B. Niu, The microwave dielectric properties of (Ni,Zn)0.5Ti0.5NbO4 solid solution. Mater. Lett. 113, 111–113 (2013)

    Article  Google Scholar 

  12. L.X. Li, H.C. Cai, Q. Ren, H. Sun, Z.D. Gao, Microstructure and microwave dielectric characteristics of ZnTi(Nb1−xSbx)2O8 ceramics. Ceram. Int. 40, 12213–12217 (2014)

    Article  Google Scholar 

  13. J.H. Park, Y.J. Choi, S. Nahm, J.G. Park, Crystal Structure and microwave dielectric properties of ZnTi(Nb1−xTax)2O8 ceramics. J. Alloys Compd. 509, 6908–6912 (2011)

    Article  Google Scholar 

  14. T. Negas, G. Yeager, S. Bell, N. Coats, I. Minis, BaTi4O9/Ba2Ti9O20-based ceramics resurrected for modern microwave applications. Am. Ceram. Soc. Bull. 72, 80–89 (1993)

    Google Scholar 

  15. N. Michiura et al., Role of donor and acceptor ions in the dielectric loss tangent of (Zr0.8Sn0.2)TiO4 dielectric resonator material. J. Am. Ceram. Soc. 78, 793–796 (1995)

    Article  Google Scholar 

  16. D.W. Kim, K.H. Ko, D.K. Kwon, K.S. Hong, Origin of microwave dielectric loss in ZnNb2O6–TiO2. J. Am. Ceram. Soc. 85, 1169–1172 (2010)

    Article  Google Scholar 

  17. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976)

    Article  Google Scholar 

  18. J. Zhang, R.Z. Zuo, Effects of Zr substitution on the microstructure and microwave dielectric properties of Li2Zn(Ti1−xZrx)3O8 ceramics. J. Mater. Sci. Mater. Electron. 26, 9219–9224 (2015)

    Article  Google Scholar 

  19. C.F. Tseng, Relationships between Zr substitution for Ti and microwave dielectric properties in Mg(ZrxTi1–x)O3 ceramics. J. Alloys Compd. 509, 9447–9450 (2011)

    Article  Google Scholar 

  20. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microwave Theory Tech. 18, 476–485 (1970)

    Article  ADS  Google Scholar 

  21. Y. Kobayashi, M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Trans. Microwave Theory Tech. 33, 586–592 (1985)

    Article  ADS  Google Scholar 

  22. X.S. Lyu, L.X. Li, S.A. Zhang, H. Sun, B.W. Zhang et al., Crystal structure and microwave dielectric properties of novel (1 − x)ZnZrNb2O8 − xTiO2 ceramics. Mater. Lett. 171, 129–132 (2016)

    Article  Google Scholar 

  23. J.J. Bian, Y.F. Dong, New high Q microwave dielectric ceramics with rock salt structures: (1 − x)Li2TiO3 + xMgO system (0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 30, 325–330 (2010)

    Article  Google Scholar 

  24. S. Wu, J. Xue, Y. Fan, Spinel Mg(Al,Ga)2O4 solid solution as high performance microwave dielectric ceramics. J. Am. Ceram. Soc. 97, 3555–3560 (2015)

    Article  Google Scholar 

  25. D. Stroud. The effective medium approximations: some recent developments [J]. Superlattice Microstruct. 23, 567–573 (1997)

    Article  ADS  Google Scholar 

  26. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

    Article  ADS  Google Scholar 

  27. Y.Y. Li, X.C. Lu, Y. Zhang, Q.T. Zhang, Characterization of Co0.5(Ti1−xZrx)0.5NbO4 microwave dielectric ceramics based on structural refinement. Ceram. Int. 43, 11516–11522 (2017)

    Article  Google Scholar 

  28. H.T. Yu, X.M. Xue, G.L. Xu, Correlation between Sn substitution for Ti and microwave dielectric properties of magnesium titanate ceramics. Int. J. Appl. Ceram. Technol. 10, E186–E191 (2013)

    Article  Google Scholar 

  29. W.S. Xia, G.Y. Zhang, L.W. Shi, M.M. Zhang, Enhanced microwave dielectric properties of ZnTa2O6 ceramics with Sb5+ ion substitution. Mater. Lett. 24, 64–66 (2014)

    Article  Google Scholar 

  30. S.H. Yoon, D.W. Kim, S.Y. Cho, K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006)

    Article  Google Scholar 

  31. H.T. Wu, Z.B. Feng, Q.J. Mei, J.D. Guo, J.X. Bi, Correlations of crystal structure, bond energy and microwave dielectric properties of AZrNb2O8 (A = Zn, Co, Mg, Mn) ceramics. J. Alloys Compd. 648, 368–373 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation (no. 61671224) and Jiangxi Provincial Natural Science Foundation of China (no. 20171BAB216008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Li, Y., Wang, Z. et al. Effects of Zr substitution on microstructure and microwave dielectric properties of Zn(Ti1−xZrx)Nb2O8 ceramics. Appl. Phys. A 125, 29 (2019). https://doi.org/10.1007/s00339-018-2335-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2335-5

Navigation