Skip to main content
Log in

V-groove etched 1-eV-GaInNAs nipi solar cell

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Simulated and experimental properties of a Ga1−xInxAs1−yNy nipi solar cell involving V-grooves for contact formation are reported. In particular, using a drift–diffusion model, we simulate the conversion efficiency, the short-circuit current density (JSC), and the open-circuit voltage (VOC) as a function of the number of nipi junctions. Based on the modelling results, optimized nipi solar cell incorporating five n–p junction pairs was grown on a p-type GaAs (100) substrate using molecular beam epitaxy (MBE). The bandgap of the nipi structure was determined to be 1 eV. The metal contacts of the nipi solar cell structure were processed in the form of mesa and V-groove. These shapes enable both vertical and horizontal carrier transport within the solar cell. The effect of thermal annealing on J–V characteristics of both type of devices is finally assessed. The results point out that the V-groove sample has better photovoltaic characteristics than the mesa structure sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Erol, Dilute III–V nitride semiconductor and material systems (Springer, Berlin, 2008)

    Book  Google Scholar 

  2. M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, Yazawa, Y 1996 GaInNAs: a novel material for long-wavelength-range laser diodes with excellent high-temperature performance Jpn. J. Appl. Phys. 35 1273–5

  3. D.J. Friedman, J.F. Geisz, S.R. Kurtz, J.M. Olson 1998 1-eV GaInNAs solar cells for ultrahigh- efficiency multijunction devices 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion pp 3–7

  4. S. Kurtz, A.A. Allerman, E.D. Jones, J.M. Gee, J.J. Banas, B.E. Hammons, InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs. Appl. Phys. Lett. 74, 729–731 (1999)

    Article  ADS  Google Scholar 

  5. S. Kurtz, J.F. Geisz, D.J. Friedman, J.M. Olson, A. Duda, N.H. Karam, R.R. King, J.H. Ermer, D.E. Joslin Modeling of electron diffusion length in GaInAsN solar cells Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference—2000 (Cat. No.00CH37036) (IEEE) pp 1210–3

  6. O. Donmez, F. Sarcan, S.B. Lisesivdin, M.P. Vaughan, A. Erol, M. Gunes, M.C. Arikan, J. Puustinen, M. Guina, Analytic modeling of temperature dependence of 2D carrier mobility in as-grown and annealed GaInNAs/GaAs quantum well structures. Semicond. Sci. Technol. 29, 125009 (2014)

    Article  ADS  Google Scholar 

  7. D.J. Friedman, J.F. Geisz, W. Metzger, K, S.W. Johnston, Trap-dominated minority-carrier recombination in GaInNAs pn junctions. Appl. Phys. Lett. 83, 698–700 (2003)

    Article  ADS  Google Scholar 

  8. S.Y. Xie, S.F. Yoon, S.Z. Wang, Effects of thermal annealing on deep-level defects and minority-carrier electron diffusion length in Be-doped InGaAsN. J. Appl. Phys. 97, 73702 (2005)

    Article  Google Scholar 

  9. K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth, A.W. Bett, Optimization of annealing conditions of (GaIn)(NAs) for solar cell applications. J. Cryst. Growth 310, 2222–2228 (2008)

    Article  ADS  Google Scholar 

  10. A. Aho, R. Isoaho, A. Tukiainen, G. Gori, R. Campesato, M. Guina 2018 Dilute nitride triple junction solar cells for space applications: Progress towards highest AM0 efficiency. Prog. Photovoltaics Res. Appl. 6–10

  11. B. Royall, Balkan, N 2009 Dilute nitride n-i-p-i solar cells Microelectronics J. 40 396–8

  12. R.E. Williams, Gallium arsenide processing techniques (ARTECH HOUSE, INC), Dedham, 1984)

    Google Scholar 

  13. A. Al-Bustani, M.Y. Feteha, Triple heterojunction ALGaAs-GaAs solar cells with front V-groove surface. Renew. Energy 8, 348–353 (1996)

    Article  Google Scholar 

  14. C.D. Cress, S.J. Polly, S.M. Hubbard, R.P. Raffaelle, R.J. Walters, Demonstration of a nipi-diode photovoltaic. Prog. Photovoltaics Res. Appl. 19, 552–559 (2011)

    Article  Google Scholar 

  15. S. Mazzucato, B. Royall, R. Ketlhwaafetse, N. Balkan, J. Salmi, J. Puustinen, M. Guina, A. Smith, Gwilliam, R 2012 Dilute nitride and GaAs n-i-p-i solar cells. Nanoscale Res. Lett. 7 631

  16. M.A. Slocum, D.V. Forbes, J.S. McNatt, S.M. Hubbard 2011 Epitaxial regrowth contacts for the nipi photovoltaic device Conf. Rec. IEEE Photovolt. Spec. Conf. 001914–8

  17. M. Wagner, J.P. Leburton 1984 Superlattices and multilayer structures for high efficiency solar cells

  18. B. Royall, N. Balkan, Modelling of multijunction solar cells with dilute nitride n-i-p-i junctions. Phys. Status Solidi Basic Res. 248, 1203–1206 (2011)

    Article  ADS  Google Scholar 

  19. S.M. Sze, Physics of semiconductor devices (Wiley, New Jersey, 1981)

    Google Scholar 

Download references

Acknowledgements

This work was supported by TUBITAK with the project no: 115F419, and Istanbul University Scientific Research Project Coordination Unit with the project no: 53196.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baris Kinaci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammetgulyyev, A., Kinaci, B., Aho, A. et al. V-groove etched 1-eV-GaInNAs nipi solar cell. Appl. Phys. A 125, 27 (2019). https://doi.org/10.1007/s00339-018-2326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2326-6

Navigation