Skip to main content
Log in

Strain-modulated mechanical, electronic, and thermal transport properties of two-dimensional PdS2 from first-principles investigations

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 16 January 2019

This article has been updated

Abstract

Strains can effectively modulate the electronic structure and thermal conductivity of materials. In this work, the electronic structure and thermal conductivity properties of PdS2 under different strains were investigated using first-principles calculation combined with iterative method for solving Boltzmann transport equation theory. Through phonon spectrum calculations, it is found that PdS2 is thermodynamically stable in the strain range from 0 to 10%. Interestingly, the strained single-layer PdS2 transforms from an indirect bandgap semiconductor to a quasi-direct bandgap semiconductor, and the bandgap of PdS2 decreases to 1.41 eV (decreased by 20.8%). Due to the softening of the phonons and the decreasing of phonons group velocity, the thermal conductivity is reduced with the applied biaxial area strains. Thermal transport investigations reveal that the in-plane thermal conductivity of unstrained PdS2 is 32.32 Wm− 1 K− 1. When the area strain reaches 10%, the thermal conductivity of PdS2 is reduced by nearly twice the ratio of strain. The sensitive strain dependence of bandgap and thermal conductivity indicates that PdS2 can flexibly select the substrate and match the substrate, and the thermoelectric coefficient can be effectively adjusted, indicating that PdS2 has good application prospects in thermoelectric, photoelectric, and catalytic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

  • 16 January 2019

    In the original publication of this article, acknowledgement disclaimer was not published completely.

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  3. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  4. M.I. Katsnelson, Mater. Today 10, 20 (2007)

    Article  Google Scholar 

  5. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  6. T. Heine, Acc. Chem. Res. 48, 65 (2015)

    Article  Google Scholar 

  7. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    Article  ADS  Google Scholar 

  8. H.S. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N. Rao, Angew. Chem. Int. Ed. 49, 4059 (2010)

    Article  Google Scholar 

  9. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, ACS Nano 8, 4033 (2014)

    Article  Google Scholar 

  10. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012)

    Article  ADS  Google Scholar 

  11. N.D. Drummond, V. Zólyomi, V.I. Fal’ko, Phys. Rev. B 85, 07423 (2012)

    Article  Google Scholar 

  12. C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Adv. Mater. 21, 2889 (2009)

    Article  Google Scholar 

  13. J.H. Warner, M.H. Rummeli, A. Bachmatiuk, B. Buchner, ACS Nano 4, 1299 (2010)

    Article  Google Scholar 

  14. A. Nag, K. Raidongia, K.P. Hembram, R. Datta, U.V. Waghmare, C.N. Rao, ACS Nano 4, 1539 (2010)

    Article  Google Scholar 

  15. Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z.Y. Ong, T. Xu, R. Xin, L. Pan, B. Wang, L. Sun, J. Wang, G. Zhang, Y.W. Zhang, Y. Shi, X. Wang, Nat. Commun. 5, 5290 (2014)

    Article  Google Scholar 

  16. K.D. Park, O. Khatib, V. Kravtsov, G. Clark, X. Xu, M.B. Raschke, Nano Lett. 16, 2621 (2016)

    Article  ADS  Google Scholar 

  17. A. Surrente, D. Dumcenco, Z. Yang, A. Kuc, Y. Jing, T. Heine, Y.C. Kung, D.K. Maude, A. Kis, P. Plochocka, Nano Lett. 17, 4130 (2017)

    Article  ADS  Google Scholar 

  18. L. Li, Y. Zhang, Nano Res. 10, 2527 (2017)

    Article  Google Scholar 

  19. C. Cheng, J.T. Sun, X.R. Chen, H.X. Fu, S. Meng, Nanoscale 8, 17854 (2016)

    Article  Google Scholar 

  20. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5, 263 (2013)

    Article  Google Scholar 

  21. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, ACS Nano 8, 1102 (2014)

    Article  Google Scholar 

  22. F. Gronvold, H. Haraldsen, A. Kjekshus, Acta Chem. Scand. 14, 1879 (1960)

    Article  Google Scholar 

  23. P. Miro, M. Ghorbani-Asl, T. Heine, Angew. Chem. Int. Ed. 53, 3015 (2014)

    Article  Google Scholar 

  24. Y. Wang, Y. Li, Z. Chen, J. Mater. Chem. C 3, 9603 (2015)

    Article  Google Scholar 

  25. M. Ghorbani-Asl, A. Kuc, P. Miro, T. Heine, Adv. Mater. 28, 853 (2016)

    Article  Google Scholar 

  26. Y. Gan, R. Quhe, L. Wu, S. Hou, J. Bi, G. Liu, P. Lu, J. Magn. Magn. Mater. 458, 310 (2018)

    Article  ADS  Google Scholar 

  27. D. Saraf, S. Chakraborty, A. Kshirsagar, R. Ahuja, Nano Energy 49, 283 (2018)

    Article  Google Scholar 

  28. H. Xie, T. Ouyang, É Germaneau, G. Qin, M. Hu, H. Bao, Phys. Rev. B 93, 075404 (2016)

    Article  ADS  Google Scholar 

  29. Y. Han, G. Qin, C. Jungemann, M. Hu, Nanotechnology 27, 265706 (2016)

    Article  ADS  Google Scholar 

  30. L. Zhu, T. Zhang, Z. Sun, J. Li, G. Chen, S.A. Yang, Nanotechnology 26, 465707 (2015)

    Article  ADS  Google Scholar 

  31. Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, ACS Nano 2, 2301 (2008)

    Article  Google Scholar 

  32. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Phys. Rev. B 79, 205433 (2009)

    Article  ADS  Google Scholar 

  33. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  34. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  36. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  37. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

    Article  ADS  Google Scholar 

  38. A. Togo, F. Oba, I. Tanaka, Phys. Rev. B 78, 134106 (2008)

    Article  ADS  Google Scholar 

  39. W. Li, J. Carrete, N.A. Katcho, N. Mingo, Computer Phys. Commun. 185, 1747 (2014)

    Article  ADS  Google Scholar 

  40. S. Ahmad, Mater. Chem. and Phys. 198, 162 (2017)

    Article  Google Scholar 

  41. F. Mouhat, F.X. Coudert, Phys. Rev. B 90, 224104 (2014)

    Article  ADS  Google Scholar 

  42. R.C. Andrew, R.E. Mapasha, A.M. Ukpong, N. Chetty, Phys. Rev. B 85, 125428 (2012)

    Article  ADS  Google Scholar 

  43. H. Peelaers, C.G. Van de Walle, J. Phys. Chem. C 118, 12073 (2014)

    Article  Google Scholar 

  44. R.E. Cohen, O. Gulseren, R.J. Hemley, Am. Miner. 85, 338 (2000)

    Article  ADS  Google Scholar 

  45. A. Larmagnac, S. Eggenberger, H. Janossy, J. Voros, Sci. Rep. 4, 7254 (2014)

    Article  ADS  Google Scholar 

  46. G.B. Liu, D. Xiao, Y. Yao, X. Xu, W. Yao, Chem. Soc. Rev. 44, 2643 (2015)

    Article  Google Scholar 

  47. L. Fu, Y. Wan, N. Tang, Y.M. Ding, J. Gao, J. Yu, H. Guan, K. Zhang, W. Wang, C. Zhang, J.J. Shi, X. Wu, S.F. Shi, W. Ge, L. Dai, B. Shen, Sci. Adv. 3, e1700162 (2017)

    Article  ADS  Google Scholar 

  48. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  49. C. He, C. Zhang, J. Li, X. Peng, L. Meng, C. Tang, J. Zhong, Phys. Chem. Chem. Phy. 18, 9682 (2016)

    Article  Google Scholar 

  50. S. Froyen, D.M. Wood, A. Zunger, Phys. Rev. B 36, 4547 (1987)

    Article  ADS  Google Scholar 

  51. H. Zabel, J. Phys. Condens. Mat. 13, 7679 (2001)

    Article  ADS  Google Scholar 

  52. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  53. Y.-Y. Qi, T. Zhang, Y. Cheng, X.-R. Chen, D.-Q. Wei, L.-C. Cai, J. Appl. Phys. 119, 095103 (2016)

    Article  ADS  Google Scholar 

  54. K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J. McGaughey, J.A. Malen, Nat. Commun. 4, 1640 (2013)

    Article  ADS  Google Scholar 

  55. Y. Zhou, Y. Cheng, X.-R. Chen, C.-E. Hu, Q.-F. Chen, Philos. Mag. 98, 1900 (2018)

    Article  ADS  Google Scholar 

  56. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2(5), 466 (2009)

    Article  Google Scholar 

  57. Y. Han, J.Y. Yang, M. Hu, Nanoscale 10(11), 5229–5238 (2018)

    Article  Google Scholar 

  58. Y. Kuang, L. Lindsay, S. Shi, X. Wang, B. Huang, Int. J. Heat Mass Transf. 101, 772 (2016)

    Article  Google Scholar 

  59. D. Qin, X.-J. Ge, G. Ding, G. Gao, J.-T. Lü, RSC Adv. 7, 47243 (2017)

    Article  Google Scholar 

  60. G. Li, K. Yao, G. Gao, Nanotechnology 29, 015204 (2018)

    Article  ADS  Google Scholar 

  61. H.Y. Lv, W.J. Lu, D.F. Shao, H.Y. Lu, Y.P. Sun, J. Mater. Chem. C 4, 4538 (2016)

    Article  Google Scholar 

  62. S.-D. Guo, J. Mater. Chem. C 4, 9366 (2016)

    Article  Google Scholar 

  63. G. Qin, Q.-B. Yan, Z. Qin, S.-Y. Yue, M. Hu, G. Su, Phys. Chem. Chem. Phy. 17, 4854 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support by the NSAF Joint Fund Jointly setup by the National Natural Science Foundation of China and the Chinese Academy of Engineering Physics under Grant No. U1830101, the Science Challenge Project under Grant No. TZ2016001, and the National Natural Science Foundation of China under Grant No. 11504035.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cui-E Hu or Xiang-Rong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, YS., Lu, Q., Hu, CE. et al. Strain-modulated mechanical, electronic, and thermal transport properties of two-dimensional PdS2 from first-principles investigations. Appl. Phys. A 125, 33 (2019). https://doi.org/10.1007/s00339-018-2311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2311-0

Navigation