Skip to main content
Log in

Thickness-modulated temperature dependent optical properties of VO2 thin films

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The optical properties of VO2 have a sharp change during metal–insulator transition, which indicates wide applications in manipulating electromagnetic waves. Here, VO2 thin films with different thicknesses were synthesized by polymer-assisted deposition. The transmittance change trend of the VO2 film with temperature is related with the thickness of the film, which is caused by a dramatic change of complex refractive index during phase transition. However, the transient reflectivity of 150-nm-thick VO2 films presented abnormal change trend with temperature compared with other thinner VO2 films, which may be related with the coexistence of multiphase VO2. The thickness dependent change trend of transmittance and transient reflectivity at specific light may open a new method to fabricate thickness periodic distribution metasurfaces by VO2 film and promote the applications of VO2 film as a metamaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, T.-J. Cui, Light: Sci. Appl. 4, e324 (2015)

    Article  Google Scholar 

  2. S. Liu, T.J. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J.Q. Gu, W.X. Tang, M.Q. Qi, J.G. Han, W.L. Zhang, X.Y. Zhou, Q. Cheng, Adv. Sci. 3, 12 (2016)

    Google Scholar 

  3. F.J. Morin, Phys. Rev. Lett. 3, 34 (1959)

    Article  ADS  Google Scholar 

  4. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  5. A.S. Barker, H.W. Verleur, H.J. Guggenheim, Phys. Rev. Lett. 17, 1286 (1966)

    Article  ADS  Google Scholar 

  6. T.D. Manning, I.P. Parkin, J. Mater. Chem. 14, 2554 (2004)

    Article  Google Scholar 

  7. F. Guo, S. Chen, Z. Chen, H.J. Luo, Y.F. Gao, T. Przybilla, E. Spiecker, A. Osvet, K. Forberich, C.J. Brabec, Adv. Opt. Mater. 3, 1524 (2015)

    Article  Google Scholar 

  8. C. Lee, R. Atkins, W. Gibler, H.F. Taylor, Appl. Opt. 28, 4511 (1989)

    Article  ADS  Google Scholar 

  9. M. Soltani, M. Chaker, E. Haddad, R. Kruzelecky, D. Nikanpour, J. Vac. Sci. Technolo. A Vac. Surf. Films 22, 859 (2004)

    Article  ADS  Google Scholar 

  10. A. Cavalleri, C. Tóth, C.W. Siders, J. Squier, F. Ráksi, P. Forget, J. Kieffer, Phys. Rev. Lett. 87, 237401 (2001)

    Article  ADS  Google Scholar 

  11. C. Chen, R. Wang, L. Shang, C. Guo, Appl. Phys. Lett. 93, 171101 (2008)

    Article  ADS  Google Scholar 

  12. H. Jerominek, F. Picard, D. Vincent, Optical Engineering-Bellingham-International, Soc. Opt. Eng. 32, 2092 (1993)

    Article  ADS  Google Scholar 

  13. A. Bugayev, M. Gupta, Opt. Lett. 28, 1463 (2003)

    Article  ADS  Google Scholar 

  14. D. Xiao, K.W. Kim, J.M. Zavada, J. Appl. Phys. 97, 3 (2005)

    Article  Google Scholar 

  15. J. Rensberg, S. Zhang, Y. Zhou, A.S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D.N. Basov, F. Capasso, C. Ronning, M.A. Kats, Nano Lett. 16, 1050 (2016)

    Article  ADS  Google Scholar 

  16. W. Qi-Ye, Z. Huai-Wu, Y. Qing-Hui, C. Zhi, L. Yang, J. Yu-Lan, L. Yuan, Z. Pei-Xin, J. Phys. D Appl. Phys. 45, 235106 (2012)

    Article  ADS  Google Scholar 

  17. Y. Zhao, J. Hwan Lee, Y. Zhu, M. Nazari, C. Chen, H. Wang, A. Bernussi, M. Holtz, Z. Fan, J. Appl. Phys. 111, 053533 (2012)

    Article  ADS  Google Scholar 

  18. Z. Zhang, Y. Gao, Z. Chen, J. Du, C. Cao, L. Kang, H. Luo, Langmuir 26, 10738 (2010)

    Article  Google Scholar 

  19. L. Kang, Y. Gao, H. Luo, Z. Chen, J. Du, Z. Zhang, ACS Appl. Mater. Interfaces 3, 135 (2011)

    Article  Google Scholar 

  20. M. Eaton, A. Catellani, A. Calzolari, Opt. Express 26, 5342 (2018)

    Article  ADS  Google Scholar 

  21. Q. Jia, T.M. McCleskey, A. Burrell, Y. Lin, G. Collis, H. Wang, A. Li, S. Foltyn, Nat. Mater. 3, 529 (2004)

    Article  ADS  Google Scholar 

  22. Y.D. Ji, T.S. Pan, Z. Bi, W.Z. Liang, Y. Zhang, H.Z. Zeng, Q.Y. Wen, H.W. Zhang, C.L. Chen, Q.X. Jia, Y. Lin, Appl. Phys. Lett. 101, 071902 (2012)

    Article  ADS  Google Scholar 

  23. M. Tazawa, P. Jin, S. Tanemura, Appl. Opt. 37, 1858 (1998)

    Article  ADS  Google Scholar 

  24. D. Swinehart, J. Chem. Educ. 39, 333 (1962)

    Article  Google Scholar 

  25. G. Xu, P. Jin, M. Tazawa, K. Yoshimura, Jpn. J. Appl. Phys. 43, 186 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Basic Research Program of China (973 Program) under Grant No. 2015CB351905, the National Natural Science Foundation of China (Nos. 51872038 and 11329402) and “111” project (No. B13042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Gao or Yuan Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 386 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Z., Gao, M., Lu, C. et al. Thickness-modulated temperature dependent optical properties of VO2 thin films. Appl. Phys. A 125, 63 (2019). https://doi.org/10.1007/s00339-018-2308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2308-8

Navigation