Skip to main content
Log in

Effects of selenium concentration in the precursor solution on the material properties of cadmium selenide flower-like nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CdSe flower-like nanorods (NRs) were successfully synthesized by Sol–gel technique where a simple aqueous technique was applied. The effects of different selenium (Se) concentration in the precursor solution on the material properties were studied. The X-ray diffraction (XRD) analyses show that a cubic zinc blende crystal structure was formed. Variation in the crystallite sizes were observed for different amounts of Se used in the precursor. The sizes estimated from various techniques were in the range 3–5 nm. The XRD peak intensity reached an optimum when 8 mL of 0.5 M of reduced selenium was used. The surface topography obtained from the scanning electron microscope showed densely packed and uniformly distributed flower-like rod/blade-like shaped CdSe NRs. The Fourier transform infrared spectrophotometer gave the stretching vibrations of the CdSe NRs with some bands belonging to the capping agent and the solvent. Thermal analysis conducted portrayed the 8 mL sample to be more stable than other samples at various temperatures. The photoluminescence (PL) studies displayed a red shift in the emission peaks (550–575 nm) as the selenium concentration was increased from 4 to 12 mL. This was then followed by an increase in the PL peak intensity which reached a maximum at 8 mL of Se used during the synthesis. The band gap energies calculated from the absorption spectra decreased from 3.27 to 2.79 eV with an increase in the Se concentration. The percentage transmittance of CdSe NRs varied with different amounts of Se in the precursor solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370(6488), 354 (1994)

    Article  ADS  Google Scholar 

  2. M. Gao, B. Richter, S. Kirstein, H. Mohwald, Electroluminescence studies on self-assembled films of PPV and CdSe nanoparticles. J. Phys. Chem. B 102(21), 4096–4103 (1998)

    Article  Google Scholar 

  3. H. Mattoussi, L.H. Radzilowski, B.O. Dabbousi, E.L. Thomas, M.G. Bawendi, M.F. Rubner, Electroluminescence from heterostructures of poly (phenylene vinylene) and inorganic CdSe nanocrystals. J. Appl. Phys. 83(12), 7965–7974 (1998)

    Article  ADS  Google Scholar 

  4. N.P. Gaponik, D.V. Talapin, A.L. Rogach, A light-emitting device based on a CdTe nanocrystal/polyaniline composite. Phys. Chem. Chem. Phys. 1(8), 1787–1789 (1999)

    Article  Google Scholar 

  5. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385), 2013–2016 (1998)

    Article  ADS  Google Scholar 

  6. W.C.W. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385), 2016–2018 (1998)

    Article  ADS  Google Scholar 

  7. G.P. Mitchell, C.A. Mirkin, R.L. Letsinger, Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121(35), 8122–8123 (1999)

    Article  Google Scholar 

  8. H. Weller, Colloidal semiconductor q-particles: chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Ed. 32(1), 41–53 (1993)

    Article  Google Scholar 

  9. A.P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100(31), 13226–13239 (1996)

    Article  Google Scholar 

  10. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals. Nature 404(6773), 59 (2000)

    Article  ADS  Google Scholar 

  11. S.K. Tripathi, M. Sharma, Synthesis and optical study of green light emitting polymer coated CdSe/ZnSe core/shell nanocrystals. Mater. Res. Bull. 48(5), 1837–1844 (2013)

    Article  Google Scholar 

  12. R.B. Kale, C.D. Lokhande, Band gap shift, structural characterization and phase transformation of CdSe thin films from nanocrystalline cubic to nanorod hexagonal on air annealing. Semicond. Sci. Technol. 20(1), 1 (2004)

    Article  ADS  Google Scholar 

  13. Q. Shen, D. Arae, T. Toyoda, Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates. J. Photochem. Photobiol. A 164(1–3), 75–80 (2004)

    Article  Google Scholar 

  14. X. Zhang, Y. Xie, F. Xu, D. Xu, X. Liu, In situ polymerization template route to CdSe hollow spheres under UV irradiation. Inorg. Chem. Commun. 7(3), 417–419 (2004)

    Article  Google Scholar 

  15. X. Zheng, Y. Xie, L. Zhu, X. Jiang, A. Yan, Formation of vesicle-templated CdSe hollow spheres in an ultrasound-induced anionic surfactant solution. Ultrasonics Sonochem. 9(6), 311–316 (2002)

    Article  Google Scholar 

  16. O. Palchik, R. Kerner, A. Gedanken, A.M. Weiss, M.A. Slifkin, V. Palchik, Microwave-assisted polyol method for the preparation of CdSe “nanoballs”. J. Mater. Chem. 11(3), 874–878 (2001)

    Article  Google Scholar 

  17. S. Wageh, L. Shu-Man, X. Xu-Rong, Effect of aging on CdSe nanocrystals. Physica E 16(2), 269–273 (2003)

    Article  ADS  Google Scholar 

  18. L.I. Berger, Semiconductor Materials. (CRC Press, Boca Raton, 1996), pp. 202

    Google Scholar 

  19. Y. Bao, W. An, C.H. Turner, K.M. Krishnan, The critical role of surfactants in the growth of cobalt nanoparticles. Langmuir 26(1), 478–483 (2009)

    Article  Google Scholar 

  20. B.D. Cullity, Elements of X-ray diffraction, 3rd edn. (A.W.P.C., Massachusetts, 1967), pp. 188–190

    Google Scholar 

  21. C.S. Barret, T.B. Massalski, Structure of Metals (Pergamon Press, Oxford, 1980), p. 204

    Google Scholar 

  22. Joint Committee on Powder Diffraction Standards, International Centre for diffraction data, USA file no: 19-0191, 143 (1984)

  23. J. Sakaliuniene, J. Cyviene, B. Abakeviciene, J. Dudonis, Investigation of structural and optical properties of GDC thin films deposited by reactive magnetron sputtering. VIII international conference (2010), p 141

  24. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)

    Article  ADS  Google Scholar 

  25. N.S. Gonçalves, J.A. Carvalho, Z.M. Lima, J.M. Sasaki, Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Mater. Lett. 72, 36–38 (2012)

    Article  Google Scholar 

  26. H.N. Aliya, M.R. Johan, Optical and FTIR studies of CdSe quantum dots. In Nanoelectronics conference (INEC), 2010 3rd international, IEEE (2010), pp. 887–887

  27. B. Stuart, Infrared Spectroscopy. (Wiley, New York, 2005)

    Google Scholar 

  28. S.Y. Oh, D.I. Yoo, Y. Shin, H.C. Kim, H.Y. Kim, Y.S. Chung, W.H. Park, J.H. Youk, Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 340(15), 2376–2391 (2005)

    Article  Google Scholar 

  29. Y. Nishiyama, P. Langan, H. Chanzy, Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124(31), 9074–9082 (2002)

    Article  Google Scholar 

  30. M. Schwanninger, J.C. Rodrigues, H. Pereira, B. Hinterstoisser, Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 36(1), 23–40 (2004)

    Article  Google Scholar 

  31. P.S. Nair, G.D. Scholes, Thermal decomposition of single source precursors and the shape evolution of CdS and CdSe nanocrystals. J. Mater. Chem. 16(5), 467–473 (2006)

    Article  Google Scholar 

  32. T. Trindade, P. O’Brien, N.L. Pickett, Nanocrystalline semiconductors: synthesis, properties and perspectives. Chem. Mater. 13(11), 3843 (2001)

    Article  Google Scholar 

  33. W.W. Yu, L. Qu, W. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15(14), 2854–2860 (2003)

    Article  Google Scholar 

  34. J. Jasieniak, L. Smith, J.V. Embden, P. Mulvaney, M. Califano, Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 113(45), 19468–19474 (2009)

    Article  Google Scholar 

  35. J. Tauc, in Amorphous and Liquid Semiconductors, ed. by J. Tauc. Optical Properties of Amorphous Semiconductors (Springer, Boston, MA, 1974), pp. 159–220

    Chapter  Google Scholar 

  36. S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, vol. 23. (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  37. R. Koole, E. Groeneveld, D. Van maekelbergh, A. Meijerink, in Nanoparticles, ed. by C. de Mello Donega, Size Effects of Semiconductor Nanoparticles (Springer, Berlin, 2014), pp. 13–51

    Google Scholar 

  38. A.J. Deotale, R.V. Nandedkar, Correlation of particle size, strain and band gap of iron oxide nanoparticles. Mater. Today Proc. 3(6), 2069–2076 (2016)

    Article  Google Scholar 

  39. A.M. Maroof, Hegazy, A. El-Hameed, Characterization of CdSe-nanocrystals used in semiconductors for aerospace applications: production and optical properties. Astron. Geophys. 3(1), 82–87 (2014)

    Google Scholar 

  40. T. Kippeny, L.A. Swafford, S.J. Rosenthal, Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box. J. Chem. Educ. 79(9), 1094 (2002)

    Article  Google Scholar 

  41. E. Cohen, M.D. Sturge, Fluorescence line narrowing, localized exciton states, and spectral diffusion in the mixed semiconductor Cd SxSe1–x. Phys. Rev. B 25(6), 3828 (1982)

    Article  ADS  Google Scholar 

  42. C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menendez-Proupin, A.I. Ekimov, Optical vibrons in CdSe dots and dispersion relation of the bulk material. Phys. Rev. B 57(8), 4664 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support for this project from University of the Free State directorate of research fund and University of the Western Cape senate research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Kiprotich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiprotich, S., Dejene, F.B. & Onani, M.O. Effects of selenium concentration in the precursor solution on the material properties of cadmium selenide flower-like nanoparticles. Appl. Phys. A 125, 4 (2019). https://doi.org/10.1007/s00339-018-2303-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2303-0

Navigation