Skip to main content
Log in

Mechanical, structural and scaling properties of coals: depth-sensing indentation studies

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper discusses special features of mechanical behaviour of coals discovered using depth-sensing indentation (DSI) techniques along with other traditional methods of material testing. Many of the special features are caused by the presence of multiscale complex heterogeneous internal structures within the samples and brittleness of some coal components. Experimental methodology for studying mechanical properties of coals and other natural extreme materials like bones is discussed. It is argued that values of microhardness of bituminous coals correlate strongly with the maximum load; therefore, the use of this parameter in application to coals may be meaningless. For analysis of the force-displacement curves obtained by DSI, both Oliver–Pharr and Galanov–Dub approaches are employed. It is argued that during nanoindentation, the integrity of the internal structure of a coal sample within a small area of high stress field near the tip of indenter may be destroyed. Hence, the standard approaches to mechanical testing of coals should be re-examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.C. Neavel, ACS Div. Fuel Chem. Prep. 24 1, 73 (1979)

    Google Scholar 

  2. M. Klawitter, J. Esterle, S. Collins, Int. J. Rock Mech. Min. Sci. 76, 237 (2015)

    Google Scholar 

  3. P.B. Hirsch, Proc. R. Soc. A Math. Phys. Eng. Sci 226, 143 (1954)

    ADS  Google Scholar 

  4. Z. Zhao, W. Wang, C. Dai, J. Yan, Trans. Nonferrous Met. Soc. Chin. 24, 1538 (2014)

    Google Scholar 

  5. V.L. Shkuratnik, P.V. Nikolenko, A.E. Koshelev, J. Min. Sci. 52, 873 (2016)

    Google Scholar 

  6. J. Pan, Z. Meng, Q. Hou, Y. Ju, Y. Cao, J. Struct. Geol. 54, 129 (2013)

    ADS  Google Scholar 

  7. V.L. Shkuratnik, Y.L. Filimonov, S.V. Kuchurin, J. Min. Sci. 41, 44 (2005)

    Google Scholar 

  8. V.L. Shkuratnik, Y.L. Filimonov, S.V. Kuchurin, J. Min. Sci. 42, 203 (2006)

    Google Scholar 

  9. Y. Zhao, S. Liu, Y. Jiang, K. Wang, Y. Huang, Rock Mech. Rock Eng. 49, 1709 (2016)

    ADS  Google Scholar 

  10. Y. Zhao, G.-F. Zhao, Y. Jiang, D. Elsworth, Y. Huang, Int. J. Coal Geol. 132, 81 (2014)

    Google Scholar 

  11. R.D. West, G. Markevicius, V.M. Malhotra, S. Hofer, Fuel 98, 213 (2012)

    Google Scholar 

  12. A.N. Korshunov, D.M. Dergunov, A.B. Logov, B.L. Gerike, Sov. Min. Sci. 11, 571 (1975)

    Google Scholar 

  13. N.H. Macmillan, D.G. Rickerby, J. Mater. Sci. 14, 242 (1979)

    ADS  Google Scholar 

  14. B. Das, Int. J. Rock Mech. Min. Sci. 9, 783 (1972)

    Google Scholar 

  15. GOST 21206-75, in Coals and Anthracite. Determination Method for Microhardness and Microbrittleness (Standards publishing, Moscow, 1977)

  16. V.L. Shkuratnik, Y.L. Filimonov, S.V. Kuchurin, J. Min. Sci. 40, 458 (2004)

    Google Scholar 

  17. A. Morcote, G. Mavko, M. Prasad, Geophysics 75, E227 (2010)

    ADS  Google Scholar 

  18. X. Liu, F. Dai, J. Liu, Comput. Model. New Technol. 18, 337 (2014)

    ADS  Google Scholar 

  19. V.L. Shkuratnik, Y.L. Filimonov, S.V. Kuchurin, J. Appl. Mech. Tech. Phys. 47, 236 (2006)

    ADS  Google Scholar 

  20. A.O. Vatulyan, E.L. Kossovich, D.K. Plotnikov, Mech. Solids 52, 429 (2017)

    ADS  Google Scholar 

  21. J.G. Speight, The Chemistry and Technology of Coal, 3rd edn. (CRC Press, New York, 2013)

    Google Scholar 

  22. J. Chen, S.J. Bull, J. Phys. D. Appl. Phys. 44, 1 (2011)

    Google Scholar 

  23. J. Chen, M.A. Birch, S.J. Bull, J. Mater. Sci. Mater. Med. 21, 277 (2010)

    Google Scholar 

  24. E. Atar, C. Sarioglu, U. Demirler, E. Sabri Kayali, H. Cimenoglu, Scr. Mater. 48, 1331 (2003)

    Google Scholar 

  25. L.-N. Zhu, B.-S. Xu, H.-D. Wang, C.-B. Wang, Crit. Rev. Solid State Mater. Sci. 40, 77 (2015)

    ADS  Google Scholar 

  26. M.M. Khrushchov, E.S. Berkovich, Devices PMT-2 and PMT-3 for Microhardness Testing (Izdatelstvo AN USSR, Moscow, 1950) (in Russian)

    Google Scholar 

  27. M.M. Khruschchov, E.S. Berkovich, Izv. AN SSSR. Otd. Tekh. Nauk 1950, 1645 (1950) (in Russian)

    Google Scholar 

  28. ASTM E384, in Standard Test Method for Microindentation Hardness of Materials (ASTM International, West Conshohocken, PA, 2016)

    Google Scholar 

  29. F.M. Borodich, S.J. Bull, S.A. Epshtein, J. Min. Sci. 51, 1062 (2015)

    Google Scholar 

  30. S.A. Epshtein, F.M. Borodich, S.J. Bull, Appl. Phys. A Mater. Sci. Process. 119, 325 (2015)

    ADS  Google Scholar 

  31. E.L. Kossovich, F.M. Borodich, S.J. Bull, S.A. Epshtein, Thin Solid Films 619, 112 (2016)

    ADS  Google Scholar 

  32. A. Kounkov, GeoLines 22, 40 (2009)

    Google Scholar 

  33. E.L. Kossovich, N.N. Dobryakova, S.A. Epshtein, D.S. Belov, J. Min. Sci. 52, 906 (2016)

    Google Scholar 

  34. E. Kossovich, S. Epshtein, N. Dobryakova, M. Minin, D. Gavrilova, in Phys. Math. Model. Process. Geomedia (IPMech RAS, Moscow, 2018), pp. 45–50

  35. E.L. Kossovich, S.A. Epshtein, V.L. Shkuratnik, M.G. Minin, Gorn. Zhurnal 2017, 25 (2017)

    Google Scholar 

  36. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    ADS  Google Scholar 

  37. B.A. Galanov, S.N. Dub, J. Superhard Mater. 39, 373 (2017)

    Google Scholar 

  38. G.N. Kalei, Mashinovedenie 4, 105 (1968). (in Russian)

    Google Scholar 

  39. F.M. Borodich, L.M. Keer, Int. J. Solids Struct. 41, 2479 (2004)

    Google Scholar 

  40. F.M. Borodich, Adv. Appl. Mech. 47, 225 (2014)

    Google Scholar 

  41. M.M. Chaudhri, J. Appl. Phys. 124, 095107 (2018)

    ADS  Google Scholar 

  42. S.I. Bulychev, V.P. Alekhin, M.K. Shorshorov, A.P. Ternovskij, G.D. Shnyrev, Zavod. Lab. 41, 1137 (1975)

    Google Scholar 

  43. W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004)

    ADS  Google Scholar 

  44. B.A. Galanov, O.N. Grigorev, Y.V. Milman, I.P. Ragozin, Strength Mater. 15, 1624 (1983)

    Google Scholar 

  45. B.A. Galanov, O.N. Grigorev, Y.V. Milman, I.P. Ragozin, V.I. Trefilov, Dokl. Sov. Phys. 29, 146 (1984)

    Google Scholar 

  46. R.Y. Lo, D.B. Bogy, J. Mater. Res. 14, 2276 (1999)

    ADS  Google Scholar 

  47. J.C. Hay, A. Bolshakov, G.M. Pharr, J. Mater. Res. 14, 2296 (1999)

    ADS  Google Scholar 

  48. S. Veprek, S. Mukherjee, H.D. Mnnling, J. He, Mater. Sci. Eng. A 340, 292 (2003)

    Google Scholar 

  49. Y.P. Cao, M. Dao, J. Lu, J. Mater. Res. 22, 1255 (2007)

    ADS  Google Scholar 

  50. M.G.J. Veprek-Heijman, R.G. Veprek, A.S. Argon, D.M. Parks, S. Veprek, Surf. Coatings Technol. 203, 3385 (2009)

    Google Scholar 

  51. J. Hay, P. Agee, E. Herbert, Exp. Tech. 34, 86 (2010)

    Google Scholar 

  52. F.M. Borodich, B.A. Galanov, L.M. Keer, M.M. Suarez-Alvarez, Mech. Mater. 75, 34 (2014)

    Google Scholar 

  53. B. A. Galanov, Y. V Milman, S. I. Chugunova, I. V Goncharova, J. Superhard Mater. 1999, 25 (1999)

    Google Scholar 

  54. L.A. Galin, Contact Problems (Springer, Dordrecht, 2008)

    MATH  Google Scholar 

  55. A.N. Tikhonov, V.Y. Arsenin, Methods of Solving Ill-Posed Problems (Nauka, Moscow, 1979). (in Russian)

    MATH  Google Scholar 

  56. F.R. Gantmakher, The Theory of Matrices (Chelsea Pub. Co., New York, 1960)

    Google Scholar 

  57. V.V. Voevodin, Linear Algebra (Nauka, Moscow, 1974). (in Russian)

    MATH  Google Scholar 

  58. I.I. Argatov, F.M. Borodich, S.A. Epshtein, E.L. Kossovich, Mech. Mater. 114, 172 (2017)

    Google Scholar 

  59. J.D. Currey, Bones: Structure and Mechanics (Princeton University Press, Princeton, 2002)

    Google Scholar 

  60. J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Med. Eng. Phys. 20, 92 (1998)

    Google Scholar 

  61. D. Carnelli, P. Vena, M. Dao, C. Ortiz, R. Contro, J. R. Soc. Interface 10, 20120953 (2013)

    Google Scholar 

  62. D. Carnelli, R. Lucchini, M. Ponzoni, R. Contro, P. Vena, J. Biomech. 44, 1852 (2011)

    Google Scholar 

  63. M. Taffetani, M. Griebel, D. Gastaldi, S.M.M. Klisch, P. Vena, J. Mech. Behav. Biomed. Mater. 32, 17 (2014)

    Google Scholar 

  64. J. Menčík, D. Munz, E. Quandt, E.R. Weppelmann, M.V. Swain, J. Mater. Res. 12, 2475 (1997)

    ADS  Google Scholar 

  65. J. Devore, in Probability and Statistics for Engineering and the Sciences (Brooks/Cole, Boston, 2011)

    Google Scholar 

Download references

Acknowledgements

Research was supported by the Russian Science Foundation (Grant \(\#\) 16-17-10217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena L. Kossovich.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kossovich, E.L., Borodich, F.M., Epshtein, S.A. et al. Mechanical, structural and scaling properties of coals: depth-sensing indentation studies. Appl. Phys. A 125, 195 (2019). https://doi.org/10.1007/s00339-018-2282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2282-1

Navigation