Optical properties and gamma-shielding features of bismuth borate glasses


In the present work, six bismuth borate glass samples with chemical formula (75−x)B2O3xBi2O3–10CaO–10Na2O–5Al2O3, (x = 0.0–25.0 mol%) have been manufactured. UV–visible spectral distributions for the investigated system were measured in the range of 250–850 nm. The optical absorption data showed the existence of allowed indirect transitions. The optical energy gap values (\(E_{{\text{g}}}^{{{\text{opt}}.}}\)) via Tauc’s model vary from 3.39 to 2.45 eV. The complex dielectric constant (\(\hat {\varepsilon }\)) was evaluated. All the optical parameters are found to be sensitive to the concentration of Bi2O3. Also, gamma photons’ attenuation features such as the mass attenuation coefficient (µ/ρ), gamma photon transmission function (I/Io), effective atomic number (Zeff), and half value thickness (HVT) for the investigated glass samples were estimated using MCNPX code and XCOM program in the range of 0.356–1.33 MeV. Replacement of B2O3 by Bi2O3 enhances the ability of glass samples to attenuate gamma photons. The results revealed that the studied glasses can be considered as candidate for optical fiber, devices, and gamma shieling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    S.H. Kim, Nonlinear optical properties of TeO2-based glasses: Li (Na and K)2O– TeO2 binary glasses. J. Mater. Res. 14, 1074–1083 (1999)

    ADS  Article  Google Scholar 

  2. 2.

    H. Lin, D. Yang, G. Liu, T. Ma, B. Zhai, Q. An, E.Y.B. Pun, Optical absorption and photoluminescence in Sm3+ and Eu3+—doped rare-earth borate glasses. J. Lumin. 113, 121–128 (2005)

    Article  Google Scholar 

  3. 3.

    Z.A.S. Mahraz, M.R. Sahar, S.K. Ghoshal, M.R. Dousti, Concentration dependent luminescence quenching of Er3+-doped zinc boro-tellurite glass. J. Lumin. 144, 139–145 (2013)

    Article  Google Scholar 

  4. 4.

    I.A. Rayappan, K. Marimuthu, Luminescence spectra and structure of Er3+ doped alkali borate and fluoroborate glasses. J. Phys. Chem. Solids 74, 1570–1577 (2013)

    ADS  Article  Google Scholar 

  5. 5.

    P. Pascuta, G. Borodi, E. Culea, Influence of europium ions on structure and crystallization properties of bismuth borate glasses and glass ceramics. J. Non-Cryst. Solids 354, 5475–5479 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    M. Abdel-Baki, F. Abdel Wahab, A. Radi, F. El-Diasty, J. Phys. Chem. Solids 68, 1457–1470 (2007)

    ADS  Article  Google Scholar 

  7. 7.

    G.D. Chryssikos, E.I. Kamitsos, M.A. Karakassides, Structure of borate glasses. II: Alkali induced network modifications in terms of structure and properties. Phys. Chem. Glasses 31, 109–111 (1990)

    Google Scholar 

  8. 8.

    S. Rani, S. Sanghi, A. Agarwal, N. Kishore, Study of structure and Li+ ions dynamics in presence of Fe2O3 in Bi2O3∙B2O3 Glasses. Solid State Phenom 161, 51–61 (2010)

    Article  Google Scholar 

  9. 9.

    T. Inoue, T. Honma, V. Dimitrov, T. Komatsu, Approach to thermal properties and electronic polarizability from average single bond strength in ZnO–Bi2O3–B2O3glasses. J. Solid State. Chem 183, 3078–3085 (2010)

    ADS  Article  Google Scholar 

  10. 10.

    A. Dutta, A. Ghosh, Structural and optical properties of lithium barium bismuthate glasses. J. Non-Cryst. Solids 353, 1333–1336 (2007)

    ADS  Article  Google Scholar 

  11. 11.

    H. Deters, J.F. de Lima, C. Magon, A. de Camargo, H. Eckert, Structural models for yttrium aluminium borate laser glasses: NMR and EPR studies of the system (Y2O3)0.2–(Al2O3)x–(B2O3)0.8–x. Phys. Chem. Chem. Phys. 13, 16071–16083 (2011)

    Article  Google Scholar 

  12. 12.

    S. Bale, N. Srinivasa Rao, S. Rahman, Spectroscopic studies of Bi2O3–Li2O–ZnO–B2O3 glasses. Solid State Sci. 10, 326–331 (2008)

    ADS  Article  Google Scholar 

  13. 13.

    G. Bandoli, D. Barecca, E. Brescacin, G.A. Rizzi, E. Tondello, Pure and mixed phase Bi203 thin films obtained by metal organic chemical vapor deposition. Chem. Vap.Deposition 2, 238–242 (1996)

    Article  Google Scholar 

  14. 14.

    S. Rani, S. Sanghi, A. Agarwal, N. Ahlawat, Influence of Bi2O3 on optical properties and structure of bismuth lithium phosphate glasses. J. Alloys Comp. 477, 504–509 (2009)

    Article  Google Scholar 

  15. 15.

    M.A. Aksan, S. Altin, Y. Balci, M.E. Yakinci, Structural characterization and transport properties of the HT c Bi2Sr2(Ca,Cd)Cu2O8 + δ glass-ceramic rods. Mater. Chem. Phys. 106, 428–436 (2007)

    Article  Google Scholar 

  16. 16.

    S. Altin, M.A. Aksan, E. Altin, Y. Balci, M.E. Yakinci, Effect of Bi2O3 addition on the single-crystal BiSrCaCuO Whisker growth. J. Supercond. Novel Magn. 24, 331–339 (2011)

    Article  Google Scholar 

  17. 17.

    R. Ozturk, M.A. Aksan, S. Altin, M.E. Yakinci, Y. Balci, Effect of Ce substitution on superconducting properties of Bi2Sr2Ca2Cu3O10 + δ system fabricated by glass-ceramic technique. J. Supercond. Novel Magn. 24, 1105–1110 (2011)

    Article  Google Scholar 

  18. 18.

    I. Ardelean, S. Cora, R.C. Lucacel, O. Hulpus, EPR and FT-IR spectroscopic studies of B2O3-Bi2O3-MnO glasses. Solid State Sci. 7, 1438–1442 (2005)

    ADS  Article  Google Scholar 

  19. 19.

    F. He, J. Wang, D. Deng, Effect of Bi2O3 on structure and wetting studies of Bi2O3–ZnO–B2O3 glasses. J. Alloys Comp. 509, 6332–6336 (2011)

    Article  Google Scholar 

  20. 20.

    A.A. Ali, Y.S. Rammah, R. El-Mallawany, D. Souri, FTIR and UV spectra of pentaternary borate glasses. Measurement 105, 72–77 (2017)

    Article  Google Scholar 

  21. 21.

    RSICC Computer Code Collection, MCNPX User’s Manual Version 2.4.0. Monte Carlo N-Particle Transport Code System for Multiple and High Energy Applications (2002)

  22. 22.

    H.O. Tekin, M.I. Sayyed, A.M.S. Issa, Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiat. Phys. Chem. 150, 95–100 (2018). https://doi.org/10.1016/j.radphyschem.2018.05.002

    ADS  Article  Google Scholar 

  23. 23.

    M.I. Sayyed, H.O. Tekin, E.E. Altunsoy, S.S Obaid, M. Almatari, Radiation shielding study of tellurite tungsten glasses with different antimony oxide as transparent shielding materials using MCNPX code. J. Non-Cryst. Solids 498, 167–172 (2018)

    ADS  Article  Google Scholar 

  24. 24.

    A. Kumar, S.P. Singh, Y. Elmahrough, U. Kara, H.O. Tekin, M.I. Sayyed, Gamma ray shielding studies on 26.66 B2O3–16GeO2–4Bi2O3–(53.33–x) PbO–xPbF2 glass system using MCNPX, Geant4 and XCOM. Mater. Res. Express. 5, 095203 (2018). https://doi.org/10.1088/2053-1591/aad821

    ADS  Article  Google Scholar 

  25. 25.

    M.I. Sayyed, M.G. Dong, H.O. Tekin, G. Lakshminarayana, M.A. Mahdi, Comparative investigations of gamma and neutron radiation shielding parameters for different borate and tellurite glass systems using WinXCom program and MCNPX code. Mater. Chem. Phys. 215, 183–202 (2018)

    Article  Google Scholar 

  26. 26.

    Y.S. Rammah, M.I. Sayyed, A.S. Abohaswa, H.O. Tekin, FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A 124, 650 (2018). https://doi.org/10.1007/s00339-018-2069-4

    ADS  Article  Google Scholar 

  27. 27.

    H.O. Tekin, T.T. Erguze, M.I. Sayyed, V.P. Singh, T. Manici, E.E. Altunsoy, O. Agar, 2018. an investigation on shielding properties of different granite samples using mcnpx code, Digest J. Nanomaterials Biostructures 13, 381–389

  28. 28.

    O.H Tekin, M.I. Sayyed, T Manici, E.E. Altunsoy. Photon shielding characterizations of bismuth modified borate silicate tellurite glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. 211, 9–16 (2018)

    Article  Google Scholar 

  29. 29.

    M.I. Sayyed, H.O. Tekin, O. Kilicoglu, O. Agar, M.H.M. Zaid, Shielding features of concrete types containing sepiolite mineral: comprehensive study on experimental, XCOM and MCNPX results. Results Phys. 11 (2018) 40–45. https://doi.org/10.1016/j.rinp.2018.08.029

    ADS  Article  Google Scholar 

  30. 30.

    J. Tauc, in Amorphous and Liquid Semiconductors, ed. by J. Tauc (Plenum Press, New York, 1974)

    Google Scholar 

  31. 31.

    N.F. Mott, E.A. Davies, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  32. 32.

    U. Zhokhavets, R. Goldhahn, G. Gobsch, W. Schliefke, Dielectric function and one-dimensional description of the absorption of poly(3-octylthiophene). Synth. Met. 138, 491–495 (2003)

    Article  Google Scholar 

  33. 33.

    M. Fadel, S.A. fayek, M.O. Abou-Helal, M.M. Ibrahim, A.M. Shakra, Structural and optical properties of SeGe and SeGeX (X = In, Sb and Bi) amorphous films. J. Alloys Compd. 485, 604–609 (2009)

    Article  Google Scholar 

  34. 34.

    S.A. Khan, F.S. Al-Hazmi, S. Al-Heniti, A.S. Faidah, A.A. Al-Ghamdi, Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se-S-Cd thin films. Curr. Appl, Phys. 10, 145–152 (2010)

    ADS  Article  Google Scholar 

  35. 35.

    M.M. Abdel-Aziz, I.S. Yahia, L.A. Wahab, M. Fadel, M.A. Afifi, Determination and analysis of dispersive optical constant of TiO2 and Ti2O3 thin films. Appl. Surf. Sci. 252, 8163–8170 (2006)

    ADS  Article  Google Scholar 

  36. 36.

    A. El-Korashy, H. El-Zahed, M.Radwan, Optical studies of [N(CH3)4]2CoCl4, [N(CH3)4]2 MnCl4 single crystals in the normal paraelectric phase. Phys. B 334, 75–81 (2003)

    ADS  Article  Google Scholar 

  37. 37.

    S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P Pawar. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94 (2018)

    ADS  Article  Google Scholar 

  38. 38.

    M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, K. Zucker, D.S. Olsen, XCOM: Photon Cross Section Database, NIST Standard Reference Database (XGAM) (2010). http://www.nist.gov/pml/data/xcom/index.cfm

  39. 39.

    D.K. Gaikwad, S.S Obaid, M.I. Sayyed, R.R. Bhosale, V.V. Awasarmol, A. Kumar, M.D. Shirsat, P.P. Pawar. Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to different glasses and concretes. Mater. Chem. Phys. 213, 508–517 (2018)

    Article  Google Scholar 

  40. 40.

    S.S. Obaid, K.D Gaikwad, P.P Pawar Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356–360 (2018)

    ADS  Article  Google Scholar 

  41. 41.

    F. Akman, R. Durak, M.F. Turhan, M.R. Kaçal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isot. 101, 107–113 (2015)

    Article  Google Scholar 

  42. 42.

    M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloy. Compd. 745, 355–364 (2018)

    Article  Google Scholar 

  43. 43.

    M.I. Sayyed, G. Lakshminarayana, M.G. Dong, M. Çelikbilek Ersundu, A.E. Ersundu, I.V. Kityk, Investigation on gamma and neutron radiation shielding parameters for BaO/SrO–Bi2O3–B2O3 glasses. Radiat. Phys. Chem. 145, 26–33 (2018)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Y. S. Rammah.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rammah, Y.S., Sayyed, M.I., Ali, A.A. et al. Optical properties and gamma-shielding features of bismuth borate glasses. Appl. Phys. A 124, 832 (2018). https://doi.org/10.1007/s00339-018-2252-7

Download citation