Skip to main content

Advertisement

Log in

Improving of tribology properties of TiAl6V4 with nanostructured Ti/TiN-multilayered coating deposited by high-vacuum magnetron sputtering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

TiAl6V4 is widely used in the medical and aerospace industry due to the good corrosion resistance and mechanical properties. In this work, single-layer TiN and multilayer Ti/TiN coatings are deposited on TiAl6V4 by high-vacuum magnetron sputtering and the phase, structure, and morphology are investigated by GIXRD, XPS, FE-SEM, and AFM. The tribological properties are determined by pin-on-disk tests with a tungsten carbide pin (WC). The 1.4 µm thick coating contains TiN, TiOxNy, and TiO2 phases. The friction coefficients, hardness, and elastic modulus of the TiN and Ti/TiN coatings are 0.43 and 0.49, 19.744 and 22.462 GPa, and 192.709 and 183.565 GPa, respectively. The tiny cracks along the scratch path on the TiN coating arise from the lower toughness compared to the Ti/TiN-multilayered coating. The larger friction coefficient in the presence of the Ti interlayer may be due to network failure at the Ti and TiN boundaries which show different crystalline structures and the stress formed at both layers prohibits dislocation movement in the Ti layer. More brittle cracks are observed from the TiN mono-layered coating and larger plastic deformation occurs on the multilayered coating, indicating that the latter is more resistant to delamination. The adhesion mechanism is dominated by the Ti intermediate layer and can be exploited to improve the effectiveness of TiN coatings in applications such as biomedical implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V.M.C.A. Oliveira, C. Aguiar, A.M. Vazquez, A. Robin, Barboza, M.J.R, Improving corrosion resistance of Ti–6Al–4V alloy through plasma-assisted PVD deposited nitride coatings. Corr. Sci. 88, 317–327 (2014)

    Article  Google Scholar 

  2. M. Atapour, A.L. Pilchak, M. Shamanian, M.H. Fathi, Corrosion behavior of Ti–8Al–1Mo–1V alloy compared to Ti–6Al–4V. Mater. Des. 32(3), 1692–1696 (2011).

    Article  Google Scholar 

  3. V. Krishnan, A. Krishnan, R. Remya; K.K. Ravikumar, S.A. Nair, S.M.A. Shibli, H.K. Varma, K. Sukumaran, K.J. Kumar, Development and evaluation of two PVD-coated β-titanium orthodontic archwires for fluoride-induced corrosion protection. Acta. Biomater. 7(4), 1913–1927 (2011)

    Article  Google Scholar 

  4. H. Krawiec, V. Vignal, E. Schwarzenboeck, J. Banas, Role of plastic deformation and microstructure in the micro-electrochemical behaviour of Ti–6Al–4V in sodium chloride solution.Electrochim. Acta. 104, 400–406 (2013)

    Article  Google Scholar 

  5. S. Kumar, T.S. Narayanan, Electrochemical characterization of β-Ti alloy in Ringer’s solution for implant application. J. Alloys Compd. 479(1), 699–703 (2009)

    Article  Google Scholar 

  6. M. Geetha, A. Singh, R. Asokamani, A. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog. Mater. Sci. 54(3), 397–425 (2009)

    Article  Google Scholar 

  7. S. Bauer, P. Schmuki, K Von der Mark, J. Park Engineering biocompatible implant surfaces: part I: materials and surfaces. Prog. Mater. Sci. 58(3), 261–326 (2013)

    Article  Google Scholar 

  8. J. Grogan, B. O’Brien, S. Leen, P. McHugh, A corrosion model for bioabsorbable metallic stents. Acta. Biomater. 7(9), 3523–3533 (2011)

    Article  Google Scholar 

  9. G. Manivasagam, D. Dhinasekaran, A. Rajamanickam, Biomedical implants: corrosion and its prevention—a review.Recent. Patents. Corr. Sci. 2(1), 40–54 (2010)

    Article  Google Scholar 

  10. Y. Wang, W. Tian, T. Zhang, Y. Yang, Microstructure, spallation and corrosion of plasma sprayed Al2O3–13% TiO2 coatings. Corr. Sci. 51(12), 2924–2931 (2009)

    Article  Google Scholar 

  11. C.C. Chen, S.J. Ding, Effect of heat treatment on characteristics of plasma sprayed hydroxyapatite coatings. Mater. Trans. 47(3), 935–940 (2006)

    Article  Google Scholar 

  12. W. Yang, G. Ayoub, I. Salehinia, B. Mansoor, H. Zbib, Deformation mechanisms in Ti/TiN multilayer under compressive loading. Acta. Mater. 122, 99–108 (2017)

    Article  Google Scholar 

  13. W.J. Chou, G.P. Yu, J.H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates. Surf. Coat. Technol. 149(1), 7–13 (2002)

    Article  Google Scholar 

  14. M. Herranen, U. Wiklund, J.O. Carlsson, S. Hogmark, Corrosionbehaviour of Ti/TiN multilayer coated tool steel. Surf. Coat. Technol. 99(1), 191–196 (1998)

    Article  Google Scholar 

  15. M. Bromark, M. Larsson, P. Hedenqvist, S. Hogmark, Wear of PVD Ti/TiN multilayer coatings. Surf. Coat. Technol. 90(3), 217–223 (1997)

    Article  Google Scholar 

  16. C. Liu, P.K. Chu, G. Lin, D. Yang, Effects of Ti/TiN multilayer on corrosion resistance of nickel–titanium orthodontic brackets in artificial saliva. Corr. Sci. 49(10), 3783–3796 (2007)

    Article  Google Scholar 

  17. R. Hübler, A. Schröer, W. Ensinger, G. Wolf, F. Stedile, W. Schreiner, I. Baumvol Corrosion behavior of steel coated with thin film TiN/Ti composites. J. Vac. Sci. Technol. A. 11(2), 451–453 (1993)

    Article  ADS  Google Scholar 

  18. M. Herranen, A.D. Bauer, J.O. Carlsson, R. F. Bunshah, Corrosion properties of thin molybdenum silicide films. Surf. Coat. Technol. 96(2), 245–254 (1997)

    Article  Google Scholar 

  19. Q. Zhang, Y.X. Leng, F. Qi, T. Tao, N. Huang, Mechanical and corrosive behavior of Ti/TiN multilayer films with different modulation periods.Nucl. Instrum. Methods. Phys. Res. B. 257(1–2), 411–415 (2007)

    Article  ADS  Google Scholar 

  20. J. Marco, A. Agudelo, J. Gancedo, D. Hanžel, Corrosion resistance of single TiN layers, Ti/TiN bilayers and Ti/TiN/Ti/TiN multilayers on iron under a salt fog spray (phohesion) test: an evaluation by XPS. Surf. Interface. Anal. 27(2), 71–75 (1999)

    Article  Google Scholar 

  21. M. Flores, S. Muhl, L. Huerta, E. Andrade, The influence of the period size on the corrosion and the wear abrasion resistance of TiN/Ti multilayers. Surf. Coat. Technol. 200(5–6), 1315–1319 (2005)

    Article  Google Scholar 

  22. K. Shukla, R. Rane, J. Alphonsa, P. Maity, S. Mukherjee, Structural, mechanical and corrosion resistance properties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316L. Surf. Coat. Technol. 324, 167–174 (2017)

    Article  Google Scholar 

  23. C.L. Jiang, H.L. Zhu, K.S. Shin, Y.B. Tang, Influence of titanium interlayer thickness distribution on mechanical properties of Ti/TiN multilayer coatings. Thin. Solid. Films. 632, 97–105 (2017)

    Article  ADS  Google Scholar 

  24. G. Kim, S. Lee, J. Hahn, B. Lee, J. Han, J. Lee, Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings. Surf. Coat. Technol. 171(1), 83–90 (2003)

    Article  Google Scholar 

  25. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, X-ray peak broadening analysis in ZnO nanoparticles.Solid. State. Commun. 149(43–44), 1919–1923 (2009)

    Article  ADS  Google Scholar 

  26. S. Logothetidis, P. Patsalas, C. Charitidis, Enhanced catalytic activity of nanostructured cerium oxide films. Mater. Sci. Eng. C. 23(6–8), 803–806 (2003)

    Article  Google Scholar 

  27. Y.H. Chen, K.W. Lee, W.A. Chiou, Y.W. Chung, L.M. Keer, Synthesis and structure of smooth, superhard TiN/SiNx multilayer coatings with an equiaxed microstructure. Surf. Coat. Technol. 146147, 209–214 (2001)

    Article  Google Scholar 

  28. A.Y. Lee, D.M. Blakeslee, C.J. Powell, J. Rumble, Development of the web-based NIST X-ray Photoelectron Spectroscopy (XPS) Database. Data Sci J. 1(6), 1–12 (2002)

    Article  Google Scholar 

  29. B. Subramanian, R. Ananthakumar, V.S. Vidhya, M. Jayachandran, Influence of substrate temperature on the materials properties of reactive DC magnetron sputtered Ti/TiN multilayered thin films. Mater. Sci. Eng. B. 176(1), 1–7 (2011)

    Article  Google Scholar 

  30. B. Subramanian, R. Ananthakumar, M. Jayachandran, Structural and tribological properties of DC reactive magnetron sputtered titanium/titanium nitride (Ti/TiN) multilayered coatings. Surf. Coat. Technol. 205(11), 3485–3492 (2011)

    Article  Google Scholar 

  31. J.N. Musher, R.G. Gordon, Atmospheric pressure chemical vapor deposition of titaniumnitride from tetrakis (diethylamido) titanium and ammonia. J. Electrochem. Soc. 143(2), 736–744 (1996)

    Article  Google Scholar 

  32. W.J. Gammon, O. Kraft, A.C. Reilly, B.C. Holloway, Experimental comparison of N(1 s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds. Carbon. 41, 1917–1923 (2003)

    Article  Google Scholar 

  33. Y. Ding, Z. Farhat, D.O. Northwood, A.T. Alpas, Mechanical properties and tribological behaviour of nanolayered Al/Al2O3 and Ti/TiN composites. Surf. Coat. Technol. 68, 459–467 (1994)

    Article  Google Scholar 

  34. E. Martínez, J. Romero, A. Lousa, J. Esteve, Nanoindentation stress–strain curves as a method for thin-film complete mechanical characterization: application to nanometric CrN/Cr multilayer coatings. Appl. Phys. A. 77(3), 419–427 (2003)

    Article  ADS  Google Scholar 

  35. S. Ghasemi, A. Shanaghi, P.K. Chu, Nano mechanical and wear properties of multi-layer Ti/TiN coatingsdeposited on Al 7075 by high-vacuum magnetron sputtering. Thin. Solid. Films. 638, 96–104 (2017)

    Article  ADS  Google Scholar 

  36. S. Ghasemi, A. Shanaghi, P. K. Chu, Corrosion behavior of reactive sputtered Ti/TiN nanostructured coating and effects of intermediate titanium layer on self-healing properties. Surf. Coat. Technol. 326, 156–164 (2017)

    Article  Google Scholar 

  37. J.A. Thornton, High rate thick film growth. Annu. Rev. Mater. Sci. 7(1), 239–260 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  38. D. Zhou, H. Peng, L. Zhu, H. Guo, S. Gong, Microstructure, hardness and corrosion behaviour of Ti/TiN multilayer coatings produced by plasma activated EB-PVD. Surf. Coat. Technol. 258, 102–107 (2014)

    Article  Google Scholar 

  39. X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48(1), 11–36 (2002)

    Article  Google Scholar 

  40. L. Ma, J. Cairney, M. Hoffman, P. Munroe, Characterization of TiN thin films subjected to nanoindentation using focused ion beam milling. Appl. Surf. Sci. 237(1), 627–631 (2004)

    Article  ADS  Google Scholar 

  41. W.C. Oliver, G.M. Pharr, Animproved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(06), 1564–1583 (1992)

    Article  ADS  Google Scholar 

  42. A.D. Pogrebnjak, S.N. Bratushka, V.M. Beresnev, N. Levintant-Zayonts, Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses. Russ. Chem. Rev. 82(12), 1135–1159 (2013)

    Article  ADS  Google Scholar 

  43. X. Zhang, D. Liu, X. Li, H. Dong, Y. Xi, The Effect of Modulation Ratio of Cu/Ni Multilayer Films on the Fretting Damage Behaviour of Ti-811Titanium Alloy. Materials. 10(6), 585 (2017)

    Article  ADS  Google Scholar 

  44. Y. Liu, D. Bufford, H. Wang, Mechanical properties of highly textured Cu/Ni multilayers. Acta. Mater. 59, 1924–1933 (2011)

    Article  Google Scholar 

  45. G. Abadias, G. Michel, C. Tromas, Stress, interfacial effects and mechanical properties of nanoscale multilayered coatings. Surf. Coat. Technol. 202, 844–853 (2007)

    Article  Google Scholar 

  46. A.C. Fischer-Cripps, Nanoindentation testing, Nanoindentation. Springer, Berlin. (2011).

  47. M.A. Al-Bukhaiti, K.A. Al-hatab, W. Tillmann, F. Hoffmann, T. Sprute, Tribological and mechanical properties of Ti/TiAlN/TiAlCN nanoscale multilayer PVD coatings deposited on AISI H11 hot work tool steel. Appl. Surf. Sci. 318, 180–190 (2014)

    Article  ADS  Google Scholar 

  48. F. Yildiz, A. Alsaran, Multi-pass scratch test behavior of modified layer formed during plasma nitriding. Tribol. Int. 43(8), 1472–1478 (2010)

    Article  Google Scholar 

  49. J. Lackner, L. Major, M. Kot, Microscale interpretation of tribological phenomena in Ti/TiN soft-hard multilayer coatings on soft austenite steel substrates. Bull. Pol. Acad. Sci. Tech. Sci. 59(3), 343–355 (2011)

    Google Scholar 

  50. J.K. Park, C. Ziebert, M. Stüber, Y.J. Baik, Improvement of hardness and toughness of TiAlN coating by nanoscale multilayered structurization with Si3N4. Plasma. Process. Polym. 4(S1), S902-S905 (2007)

    Article  Google Scholar 

  51. Y. Cheng, T. Browne, B. Heckerman, C. Bowman, V. Gorokhovsky, E. Meletis, Mechanical and tribological propertiesof TiN/Ti multilayer coating. Surf. Coat. Technol. 205(1), 146–151 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Iranian Nanotechnology Initiative Council. The work was financially supported by Malayer University Research Grant, Iran National Science Foundation, and City University of Hong Kong Applied Research Grants (ARG) Nos. 9667122 and 9667144.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shanaghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanaghi, A., Ghasemi, S. & Chu, P.K. Improving of tribology properties of TiAl6V4 with nanostructured Ti/TiN-multilayered coating deposited by high-vacuum magnetron sputtering. Appl. Phys. A 124, 822 (2018). https://doi.org/10.1007/s00339-018-2221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2221-1

Navigation