Skip to main content
Log in

Enhanced grain-boundary diffusion on power loss of low-temperature-fired NiCuZn ferrites for high-frequency power supplies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

NiCuZn ferrite ceramics with high permeability, low power loss and excellent thermal stability are vital materials for high-frequency power devices. This paper analyzed grains growth and grain-boundary diffusion of Ni0.2Cu0.2Zn0.6Fe2O4 ferrite ceramics at lower temperatures by adding optimized additives. X-ray diffraction reveals that the samples are pure spinel ferrite phase sintered at low temperatures. SEM images indicate that uniform and compact NiCuZn ferrite ceramics were obtained at 920 °C for 4 h, which is very advantageous for low-temperature co-fired ceramic (LTCC) technology. In addition, the ferrite ceramics with higher permeability (~ 411 @ 1 MHz), lower power loss in high frequency (~ 442 kW/m3 @ 7 MHz) and good thermal stability were synthesized by controlling grains growth and grain-boundary diffusion. The results indicate that this ferrite ceramic material is a good candidate for the application of miniaturized power electronics in high frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Yan, K.D.T. Ngo, D. Hou, M. Mu, Y. Mei, G.-Q. Lu, J. Electron. Mater. 44, 3788 (2015)

    Article  ADS  Google Scholar 

  2. K. Praveena, H.W. Chen, H.L. Liu, K. Sadhana, S.R. Murthy, J. Magn. Magn. Mater. 420, 129 (2016)

    Article  ADS  Google Scholar 

  3. K. Sun, G. Wu, B. Wang, Q. Zhong, Y. Yang, Z. Yu, C. Wu, P. Wei, X. Jiang, Z. Lan, J. Alloy. Compd. 650, 363 (2015)

    Article  Google Scholar 

  4. A. Fujita, S. Gotoh, J. Appl. Phys. 93, 7477 (2003)

    Article  ADS  Google Scholar 

  5. B.P. Rao, C.O. Kim, C. Kim, Mater. Lett. 61, 1601 (2007)

    Article  Google Scholar 

  6. G. Kogias, V.T. Zaspalis, Ceram. Int. 42, 7639 (2016)

    Article  Google Scholar 

  7. P. Andalib, Y.J. Chen, V.G. Harris, IEEE Magn. Lett. 9, 5 (2018)

    Article  Google Scholar 

  8. K. Takadate, Y. Yamamoto, A. Makino, T. Yamaguchi, I. Sasada, J. Appl. Phys. 83, 6861 (1998)

    Article  ADS  Google Scholar 

  9. K. Gheisari, S. Javadpour, H. Shokrollahi, B. Hashemi, Magnetic losses of the soft magnetic composites consisting of iron and Ni-Zn ferrite. J. Magn. Magn. Mater. 320, 1544–1548 (2008)

    Article  ADS  Google Scholar 

  10. E.E. Ateia, M. Farag, Appl. Phys. A Mater. Sci. Process. 124, 10 (2018)

    Article  Google Scholar 

  11. G.D. Nipan, V.A. Ketsko, T.N. Kol’tsova, M.A. Kop’eva, A.I. Stognii, A.V. Trukhanov, Inorg. Mater. 46, 1019 (2010)

    Article  Google Scholar 

  12. G.D. Nipan, V.A. Ketsko, A.I. Stognij, A.V. Trukhanov, T.N. Kol’Tsova, E.N. Beresnev, M.A. Kop’Eva, L.V. Elesina, N.T. Kuznetsov, Dokl. Phys. Chem. 430, 39 (2010)

    Article  Google Scholar 

  13. B.P. Rao, C. Kim, J. Mater. Sci. 42, 8433 (2007)

    Article  ADS  Google Scholar 

  14. H. Su, H.W. Zhang, X.L. Tang, Y.L. Jing, J. Appl. Phys. 103, 5 (2008)

    Google Scholar 

  15. T. Zhou, H. Zhang, L. Jia, Y. Liao, Z. Zhong, F. Bai, H. Su, J. Li, L. Jin, C. Liu, J. Alloy. Compd. 620, 421 (2015)

    Article  Google Scholar 

  16. Y.L. Liao, F. Xu, D.N. Zhang, T.C. Zhou, Q. Wang, X.Y. Wang, L.J. Jia, J. Li, H. Su, Z.Y. Zhong, H.W. Zhang, J. Am. Ceram. Soc. 98, 2556 (2015)

    Article  Google Scholar 

  17. S. Vyazovkin, J. Comput. Chem. 18, 393 (1997)

    Article  Google Scholar 

  18. S.A. Mazen, N.I. Abu-Elsaad, Appl. Phys. A Mater. Sci. Process. 122, 1 (2016)

    Article  Google Scholar 

  19. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, L.Y. Matzui, E.L. Trukhanova, S.V. Trukhanov, J. Alloy. Compd. 754, 247 (2018)

    Article  Google Scholar 

  20. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, V.V. Oleynik, O.S. Yakovenko, L.Y. Matzui, D.A. Vinnik, J. Magn. Magn. Mater. 442, 300 (2017)

    Article  ADS  Google Scholar 

  21. M.I. Mendelson, J. Am. Ceram. Soc. 52, 443 (1969)

    Article  Google Scholar 

  22. F. Xie, L. Jia, F. Xu, J. Li, G. Gan, H. Zhang, Ceram. Int. (2018)

  23. F. Xu, Y. Liao, D. Zhang, T. Zhou, J. Li, G. Gan, H. Zhang, Inorg. Chem. 56, 4512 (2017)

    Article  Google Scholar 

  24. H. Su, X. Tang, H. Zhang, Z. Zhong, J. Shen, Sintering dense NiZn ferrite by two-step sintering process, J. Appl. Phys. 109 (2011)

    Article  Google Scholar 

  25. Y. Yang, H. Zhang, J. Li, F. Xu, G. Gan, D. Wen, Ceram. Int. 44, 10545 (2018)

    Article  Google Scholar 

  26. S.Y.R. Lopez, J. Ceram. Process. Res. 12, 228 (2011)

    Google Scholar 

  27. S.J.L. Kang, Y.I. Jung, Acta Mater. 52, 4573 (2004)

    Article  Google Scholar 

  28. M.M. Seabaugh, G.L. Messing, M.D. Vaudin, J. Am. Ceram. Soc. 83, 3109 (2000)

    Article  Google Scholar 

  29. J.D. Wang, R. Raj, J. Am. Ceram. Soc. 74, 1959 (1991)

    Article  Google Scholar 

  30. T. Paul, S.P. Harimkar, Scr. Mater. 126, 37 (2017)

    Article  Google Scholar 

  31. Y. Liao, F. Xu, D. Zhang, T. Zhou, Q. Wang, X. Wang, L. Jia, J. Li, H. Su, Z. Zhong, H. Zhang, J. Am. Ceram. Soc. 98, 2556 (2015)

    Article  Google Scholar 

  32. H. Su, H.W. Zhang, X.L. Tang, Y.L. Liu, J. Mater. Sci. 42, 2849 (2007)

    Article  ADS  Google Scholar 

  33. D.S. Klygach, M.G. Vakhitov, D.A. Vinnik, A.V. Bezborodov, S.A. Gudkova, V.E. Zhivulin, D.A. Zherebtsov, C.P. Sakthidharan, S.V. Trukhanov, A.V. Trukhanov, J. Magn. Magn. Mater. (2018)

  34. M.R. Syue, F.J. Wei, C.S. Chou, C.M. Fu, Thin Solid Films 519, 8303 (2011)

    Article  ADS  Google Scholar 

  35. Y. Liao, F. Xu, D. Zhang, T. Zhou, Q. Wang, X. Wang, L. Jia, J. Li, H. Su, Z. Zhong, J. Am. Ceram. Soc. 98, 2556 (2015)

    Article  Google Scholar 

  36. D.A. Vinnik, D.S. Klygach, V.E. Zhivulin, A.I. Malkin, M.G. Vakhitov, S.A. Gudkova, D.M. Galimov, D.A. Zherebtsov, E.A. Trofimov, N.S. Knyazev, J. Alloy. Compd. 755, 177 (2018)

    Article  Google Scholar 

  37. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L.Y. Matzui, Dalton. Trans. 46 (2017)

  38. T.Y. Byun, S.C. Byeon, K.S. Hong, K.K. Chang, IEEE Trans. Magn. 35, FE08 (1999)

    Google Scholar 

  39. B. Parvatheeswara, C. Kim, J. Mater. Sci. 42, 8433 (2007)

    Article  Google Scholar 

  40. Z. Wei, P. Zheng, L. Zheng, L. Shao, J. Hu, J. Zhou, H. Qin, J. Mater. Sci. Mater. Electron. 27, 6048 (2016)

    Article  Google Scholar 

  41. J.I. Haining, Z. Lan, Y.U. Zhong, L.I. Lezhong, K. Sun, H. Zhang, Mater. Rev. (2008)

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Nos. 51602036, 6167118 and 51672036), and the key projects of Sichuan Province (Nos. 2017GZ0408 and 2017GZ0415), and the Sichuan Science and Technology Project (Grant No. 18MZGC0025), and the key projects of Chengdu (2016-HM01-00225-SF), and Guizhou province key R&D program [2016]3011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Yang or Huaiwu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, H., Li, J. et al. Enhanced grain-boundary diffusion on power loss of low-temperature-fired NiCuZn ferrites for high-frequency power supplies. Appl. Phys. A 124, 785 (2018). https://doi.org/10.1007/s00339-018-2212-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2212-2

Navigation