Skip to main content
Log in

Development of micro-hotplate and its reliability for gas sensing applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents the development of a double spiral micro-heater and its reliability testing for gas sensing applications. The design and simulation of the micro-hotplate was carried out using MEMS-CAD Tool COVENTORWARE. The micro-hotplate structure consists of a 1.0 µm-thick thermally grown SiO2 membrane of area 600 µm × 600 µm over which a double spiral platinum resistor has been fabricated. A platinum resistor of 117 Ω is fabricated on SiO2 layer using lift-off technique. The platinum deposition was carried out using DC sputtering technique. The hotplate membrane release was accomplished by using both wet and dry etching of silicon. The temperature coefficient of resistance (TCR) of platinum as measured was found to be 2.19 × 10−3/°C. This value has been used to estimate the micro-hotplate temperature. The micro-hotplate consumes only 50 mW power when heated up to 500 °C. The results of reliability testing of fabricated device using pulse mode of operation, maximum current capability and thermal stability have been presented. The hotplate has been shown to continuously operate at 500 °C for more than 4 h and sustain maximum current of 23 mA and 130 cycles of pulse mode operation without any damage to the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.Y. Afridi, J.S. Suehle, M.E. Zaghloul, D.W. Berning, A.R. Hefner, R.E. Cavicchi, C.J. Taylor, A monolithic CMOS microhotplate based gas sensor system. IEEE Sens. J 2(6), 644–655 (2002)

    Article  ADS  Google Scholar 

  2. S.Z. Ali, F. Udrea, W.I. Milne, J.W. Gardner, Tungsten-based SOI microhotplates for smart gas sensors. J. Microelectromech. Syst. 17(6), 1408–1417 (2008)

    Article  Google Scholar 

  3. S. Astié, A.M. Gué, E. Scheid, J.P. Guillemet, Design of low power SnO2 gas sensor integrated on silicon oxynitride membrane. Sens. Actuators B 67, 84–88 (2000)

    Article  Google Scholar 

  4. E. Barborini, S. Vinati, M. Leccardi, P. Repetto, G. Bertolini, O. Rorato, L. Lorenzelli, M. Decarli, V. Guarnieri, C. Ducati, P. Milani, Batch fabrication of metal oxide sensors on micro-hotplates. J. Micromech. Microeng. 18(5), 1–7 (2008)

    Article  Google Scholar 

  5. M. Baroncini, P. Placidi, G.C. Cardinali, A. Scorzoni, Thermal characterization of a microheater for micromachined gas sensors. Sens. Actuators A Phys. 115(1), 8–14 (2004)

    Article  Google Scholar 

  6. J.C. Belmonte, J. Puigcorbe, J. Arbiol, A. Vila, J.R. Morante, N. Sabate, I. Gracia, C. Cane, High-temperature low-power performing micromachined suspended micro-hotplate for gas sensing applications. Sens. Actuators B Chem. 114(2), 826–835 (2006)

    Article  Google Scholar 

  7. G. Benn, Design of a silicon carbide micro-hotplate geometry for high temperature chemical sensing. M.S. thesis, MIT, Cambridge, 2001

  8. P. Bhattacharyya, Technological journey towards reliable microheater development for MEMS gas sensors: a review. IEEE Trans. Device Mater. Reliab. 14(2), 589–599 (2014)

    Article  Google Scholar 

  9. J.M. Bosc, Y. Guo, V. Sarihan, T. Lee, Accelerated life testing for micro-chemical sensors. IEEE Trans. Reliab. 47(2), 135–141 (1998)

    Article  Google Scholar 

  10. D. Briand, S. Colin, J. Courbat, S. Raible, J. Kappler, N.F. de Rooij, Integration of MOX gas sensors on polymide hotplates. Sens. Actuators B Chem. 130(1), 430–435 (2008)

    Article  Google Scholar 

  11. D. Briand, S. Heimgartner, M. Gretillat, B. Schoot, N.F. Rooij, Thermal optimization of microhotplates that have a silicon island. J. Micromech. Microeng. 12(6), 971–978 (2002)

    Article  ADS  Google Scholar 

  12. U. Dibbern, A substrate for thin-film gas sensors in microelectronic technology. Sens. Actuators B Chem. 2(1), 63–70 (1990)

    Article  Google Scholar 

  13. I. Elmi, S. Zampolli, E. Cozzani, M. Passini, G.C. Cardinali, M. Severi, Development of ultra low power consumption hotplates for gas sensing applications, in Proc. IEEE Sensors, pp. 243–246 (2006)

  14. A. Friedberger, P. Kreisl, E. Rose, G. Muller, G. Kuhner, J. Wollenstein, H. Bottner, Micromechanical fabrication of robust low-power metal oxide gas sensors. Sens. Actuators B 93, 345–349 (2003)

    Article  Google Scholar 

  15. P. Fujres, C. Ducso, M. Adam, J. Zettner, I. Barsony, Thermal characterization of micro-hotplates used in sensor structures. Superlattices Microstruct. 35(3–6), 455–464 (2004)

    ADS  Google Scholar 

  16. K.G. Girija, S. Chakraborty, M. Menaka, R.K. Vatsa, A. Topkar, Low-cost surface micromachined microhotplates for chemiresistive gas sensors. Microsyst. Technol. 24(8), 3291 (2018) (p 7)

    Article  Google Scholar 

  17. M. Graf, D. Barrettino, H.P. Baltes, A. Hierlemann, CMOS Hotplate Chemical Microsensors (Springer, Berlin, 2007)

    Google Scholar 

  18. M. Graf, D. Barrettino, K.U. Kirstein, A. Hierlemann, CMOS microhotplate sensor system for operating temperatures up to 500 °C. Sens. Actuators B 117, 346–352 (2006)

    Article  Google Scholar 

  19. B. Guo, A. Bermak, P.C.H. Chan, G. Yan, An integrated surface micromachined convex microhotplate structure for tin oxide gas sensor array. IEEE Sens. J 7(12), 1720–1726 (2007)

    Article  ADS  Google Scholar 

  20. E.E. Karpov, E.F. Karpov, A. Suchkov, S. Mironov, A. Baranov, V. Sleptsov, L. Calliari, Energy efficient planar catalytic sensor for methane measurement. Sens. Actuators A Phys. 194, 176–180 (2013)

    Article  Google Scholar 

  21. H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B 192(1), 607–627 (2013)

    Google Scholar 

  22. L. Kulhari, P.K. Khanna, Design, simulation and fabrication of LTCC-based microhotplate for gas sensor applications. Microsyst. Technol. 24, 2169–2175 (2018)

    Article  Google Scholar 

  23. D.S. Lee, S.W. Ban, M. Lee, D.D. Lee, Micro gas sensor array with neural network for recognizing combustible leakage gases. IEEE Sens. J. 5(3), 530–536 (2005)

    Article  ADS  Google Scholar 

  24. P. Maccagnani, R. Angelucci, P. Pozzi, A. Poggi, L. Dori, G.C. Cardinali, P. Negrini, Thick oxidised porous silicon layer as a thermoinsulating membrane for high-temperature operating thin-and thick-film gas sensors. Sens. Actuators B 49, 22–29 (1998)

    Article  Google Scholar 

  25. L. Mele, F. Santagata, E. Iervolino, M. Mihailovic, T. Rossi, A.T. Tran, H. Schellevis, J.F. Creemer, P.M. Sarro (2012), A molybdenum MEMS microhotplate for high temperature operation, Sens. Actuators A 188, 173–180

    Article  Google Scholar 

  26. Y. Mo, Y. Okawa, K. Inoue, K. Natukawa, Low-voltage and low power optimization of micro-heater and its on-chip drive circuitry for gas sensor array. Sens. Actuators A Phys. 100(1), 94–101 (2002)

    Article  Google Scholar 

  27. A. Mozalev, R. Calavi, R.M. Va´zquez, I. Gra`cia, C. Cane, X. Correig, X. Vilanova, F.G. Guirado, J.H. lek, E. Llobet (2013), MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer, Int. J. Hydrog. Energy 38, 8011–8021

    Article  Google Scholar 

  28. K. Oblova, I. Anastasia, S. Sergey, S. Nikolay, L. Alexandr, V. Alexey, S. Andrey, Fabrication of microhotplates based on laser micromachining of zirconium oxide. Phys. Proc. 72, 485–489 (2015)

    Article  Google Scholar 

  29. A. Oprea, J. Courbat, N. Barsan, D. Briand, N.F. de Rooij, U. Weimar, Temperature, humidity and gas sensors integrated on plastic foil for low power applications. Sens. Actuators B 140, 227–232 (2009)

    Article  Google Scholar 

  30. R. Phatthanakun, P. Deelda, W. Pummara, C. Sriphung, C. Pantong, N. Chomnawang, Design and fabrication of thin-film aluminum microheater and nickel temperature sensor, in Proc. IEEE NEMS, Kyoto, pp. 112–115 (2012)

  31. M. Prasad, Design, development and reliability testing of a low power bridge-type micromachined hotplate. J. Microelectron. Reliab. 55(06), 937–944 (2015)

    Article  Google Scholar 

  32. M. Prasad, R.P. Yadav, V. Sahula, V.K. Khanna, FEM simulation of platinum-based microhotplate using different dielectric membranes for gas sensing applications. J. Sens. Rev. 32(1), 59–65 (2012)

    Article  Google Scholar 

  33. C. Rossi, P.T. Boyer, D. Estbve, Realization and performance of thin SiO2, SiNx membrane for microheater applications. Sens. Actuators A 64, 241–245 (1998)

    Article  Google Scholar 

  34. J. Sama, G. Domenech, R.R. Guillem, S. Albert, S. Michael, S. Barth, J. Santander, C. Calaza, I. Gracia (2017), Low temperature humidity sensor based on Ge nanowires selectively grown on suspended microhotplates, Sens. Actuators B 243, 669–677 (p 9)

    Article  Google Scholar 

  35. F. Samaeifar, A. Afifi, H. Abdollahi, Simple fabrication and characterization of a platinum microhotplate based on suspended membrane structure. Exp. Tech. 40, 755–763 (2016)

    Article  Google Scholar 

  36. N.N. Samotaev, B.I. Podlepetsky, A.A. Vasiliev, A.V. Pisliakov, A.V. Sokolov, Metal-oxide gas sensor high-selective to ammonia. Autom. Remote Control 74, 308–312 (2013)

    Article  Google Scholar 

  37. T. Seiyama, A. Kato, K. Fujushi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34(11), 1502–1503 (Oct. 1962)

    Article  Google Scholar 

  38. J.C. Shim, G.S. Chung, Fabrication and Characteristics of Pt/ZnO NO Sensor Integrated SiC Micro Heater, in IEEE Sensors Conference, pp. 350–353 (2010)

  39. O. Sidek, M.Z. Ishak, M.A. Khalid, M.Z. Abu Bakar, M.A. Miskam, Effect of heater geometry on the high temperature distribution on a MEMS microhotplate. in IEEE, 3rd Asia Symposium on Quality Electronic Design (2011)

  40. I. Simon, I.N. Barsan, M. Bauer, U. Weimar, Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens. Actuators B Chem. 73(1), 1–26 (2001)

    Article  Google Scholar 

  41. R.M. Tiggelaar, Silicon-based microreactors for high-temperature heterogeneous partial oxidation reactions. Ph.D. dissertation. Univ. Twente, Enschede, 2004

  42. G. Velmathi, N. Ramshanker, S. Mohan, Design, electro-thermal simulation and geometrical optimization of double spiral shaped microheater on a suspended membrane for gas sensing, in Proc. 36th Annu. Conf. IEEE Ind. Electron. Soc., pp. 1258–1262 (2010)

  43. D. Vincenzi, M.A. Butturi, V. Guidi, M.C. Carotta, G. Martinelli, V. Guarnieri, S. Brida, B. Margesin, F. Giacomozzi, M. Zen, G.U. Pignatel, A.A. Vasiliev, A.V. Pisliakov, Development of a low-power thick-film gas sensor deposited by screen-printing technique onto a micromachined hotplate. Sens. Actuators B Chem. 77, 95–99 (2001)

    Article  Google Scholar 

  44. J. Wang, Z.A. Tang, A CMOS-compatible temperature sensor based on the gaseous thermal conduction dependent on temperature. Sens. Actuators A 176, 72–77 (2012)

    Article  Google Scholar 

  45. L. Xu, T. Li, X. Gao, Y. Wang, Development of a reliable micro-hotplate with low power consumption. IEEE Sens. J. 11(4), 913–919 (2011)

    Article  ADS  Google Scholar 

  46. Q. Zhou, A. Sussman, J. Chang, J. Dong, A. Zettl, W. Mickelson, Fast response integrated MEMS microheaters for ultra low power gas detection. Sens. Actuators A Phys. 223, 67–75 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Director, CSIR-CEERI, Pilani for encouragement and guidance. They are also thankful to all members of Smart Sensor Area for helpful discussions, technical assistance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahanth Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, M., Dutta, P.S. Development of micro-hotplate and its reliability for gas sensing applications. Appl. Phys. A 124, 788 (2018). https://doi.org/10.1007/s00339-018-2210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2210-4

Navigation