Skip to main content
Log in

Excellent thermal stability and low dielectric loss of (Ba1 − xBi0.5xSr0.5x)(Ti1 − xBi0.5xZr0.5x)O3 solid solution ceramics in a broad temperature range applied in X8R

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

(Ba1 − xBi0.5xSr0.5x)(Ti1 − xBi0.5xZr0.5x)O3 [BBSTBZ, 0.02 ≤ x ≤ 0.1] ceramics were synthesized by a traditional solid-state reaction technique. The transition from tetragonal phase to pseudocubic phase at 0.06 ≤ x ≤ 0.08 was observed in Raman spectra and X-ray diffraction patterns. With adding (Bi3+, Sr2+, Zr4+), the thermal-stability of relative permittivity (Δε/ε25 °C) and dielectric loss (tan δ) of ceramics were optimized. Especially, (Ba0.9Bi0.05Sr0.05)(Ti0.9Bi0.05Zr0.05)O3 ceramics with small Δε/ε25 °C value (≤ ± 15%) in a wide temperature range of − 70 °C to 155 °C, high εr (εr ~ 2088–2116) and tan δ (tan δ ≤ 0.02) from − 10 °C to 200 °C were obtained, which indicates that BBSTBZ is suitable for X8R applications. Impedance spectroscopy was used to analyse the conduction and relaxation processes. The results showed that the relaxation and conduction process in the high-temperature region are thermally activated, and the oxygen vacancies are charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.M. Zhang, M.H. Cao, Z.H. Yao, Z.J. Wang, Z. Song, A. Ullah, H. Hao, H.X. Liu, Mater. Res. Bull. 67, 70–76 (2015)

    Article  Google Scholar 

  2. J. Wang, S.L. Jiang, D. Jiang, J.J. Tian, Y.L. Li, Y. Wang, Mater. Res. Bull. 38, 5853–5857 (2012)

    Google Scholar 

  3. S.F. Wang, G.O. Dayton, J. Am. Ceram. Soc. 82, 2677–2682 (2010)

    Article  Google Scholar 

  4. W.H. Lee, C.Y. Su, J. Am. Ceram. Soc. 90, 3345–3348 (2010)

    Article  Google Scholar 

  5. V. Gartnerova, O. Pacherova, M. Klinger, M. Jelinek, A. Jager, M. Tyunina, Mater. Res. Bull. 89, 180–184 (2017)

    Article  Google Scholar 

  6. Y.H. Hoon, Y.H. Han, Jpn. J. Appl. Phys. 44, 6143 (2014)

    Google Scholar 

  7. T. Ishidate, S. Abe, H. Takahashi, N. Mori, Phys. Rev. Lett. 78, 2397–2400 (1997)

    Article  ADS  Google Scholar 

  8. Y.J. Wu, Y.Q. Lin, S.P. Gu, X.M. Chen, Appl. Phys. A Mater. Sci. Process. 97, 191–194 (2009)

    Article  ADS  Google Scholar 

  9. J.B. Lim, S. Zhang, T.R. Shrout, Electron. Mater. Lett. 7, 71–75 (2011)

    Article  ADS  Google Scholar 

  10. T. Wang, H. Hao, M. Liu, D. Zhou, Z. Yao, M. Cao et al., J. Am. Ceram. Soc. 98, 690–693 (2015)

    Article  Google Scholar 

  11. N. Raengthon, H.J. Brown-Shaklee, G.L. Brennecka, D.P. Cann, J. Mater. Sci. 48, 2245–2250 (2013)

    Article  ADS  Google Scholar 

  12. A. Zeb, S.J. Milne, J. Eur. Ceram. Soc. 34, 3159–3166 (2014)

    Article  Google Scholar 

  13. S.F. Wang, J.H. Li, Y.F. Hsu, Y.C. Wu, Y.C. Lai, M.H. Chen, J. Eur. Ceram. Soc. 33, 1793–1799 (2013)

    Article  Google Scholar 

  14. S. Mahajan, D. Haridas, K. Sreenivas, O.P. Thakur, C. Prakash, Mater. Lett. 97, 40–43 (2013)

    Article  Google Scholar 

  15. X.L. Chen, J. Chen, D.D. Ma, L. Fang, H.F. Zhou, Ceram. Int. 41, 2081–2088 (2015)

    Article  Google Scholar 

  16. X.L. Chen, G.S. Huang, D.D. Ma, G.F. Liu, H.F. Zhoun, Ceram. Int. 43, 926–929 (2017)

    Article  Google Scholar 

  17. D.D. Ma, X.L. Chen, G.S. Huang, J. Chen, H.F. Zhou, F. Fang, Ceram. Int. 41, 7157–7161 (2015)

    Article  Google Scholar 

  18. K. Suzuki, K. Kijima, J. Mater. Sci. 40, 1289–1892 (2005)

    Article  ADS  Google Scholar 

  19. C.C. Huang, D.P. Cann, X. Tan, N. Vittayakorn, J. Appl. Phys. 102, 136 (2007)

    Google Scholar 

  20. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  21. C.B. Long, H.Q. Fan, M.M. Li, G.Z. Dong, Q. Li, Scr. Mater. 75, 70–73 (2014)

    Article  Google Scholar 

  22. M. Deluca, Z.G. Al-Jlaihawi, K. Reichmann, A.M.T. Bell, A. Feteira, J. Mater. Chem. A 6, 5443–5451 (2018)

    Article  Google Scholar 

  23. U.D. Venkateswaran, V.M. Naik, R. Naik, Phys. Rev. B 58, 14256–14260 (1998)

    Article  ADS  Google Scholar 

  24. C.H. Perry, D.B. Hall, Phys. Rev. Lett. 15, 700–702 (1965)

    Article  ADS  Google Scholar 

  25. M.H. Frey, and D.A. Phys. Rev. B 54, 3158 (1996)

    Article  ADS  Google Scholar 

  26. J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, A. Simon, Phys. Rev. B 69, 092104 (2004)

    Article  ADS  Google Scholar 

  27. J. Plocharski, W. Wieczoreck, Solid. State. Ionics. 28, 979–982 (1988)

    Article  Google Scholar 

  28. A.K. Jonscher, The universal dielectric response. Nature. 6, 19–24 (1977)

    Google Scholar 

  29. R. Gerhardt, J. Phys. Chem. Solids 55, 1491–1506 (1994)

    Article  ADS  Google Scholar 

  30. X. Yao, Z.L. Chen, L.E. Cross, J. Appl. Phys. 54, 3399–3403 (1984)

    Google Scholar 

  31. A.K. Jonscher, J. Phys. D Appl. Phys. 32, R57–R70 (1999)

    Article  ADS  Google Scholar 

  32. L. Liu, Y. Huang, Y. Li, M. Wu, L. Fang, C. Hu, Y. Wang, Phys. B 407, 136–139 (2012)

    Article  ADS  Google Scholar 

  33. S. Steinsvik, R. Bugge, J. Gjonnes, J. Tafto, T. Norby, J. Phys. Chem. Solids 58, 969–976 (1997)

    Article  ADS  Google Scholar 

  34. S. Sen, R. Choudhary, P. Pramanik, Phys. B 387, 56–62 (2007)

    Article  ADS  Google Scholar 

  35. F.A. Kröger, H.J. Vink, J. Phys. Chem. Solids 5, 208–223 (1958)

    Article  ADS  Google Scholar 

  36. C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B. 62, 228–236 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by Natural Science Foundation of China (Nos. 11464009 and 11664008), Natural Science Foundation of Guangxi (Nos. 2015GXNSFDA139033, 2017GXNSFFA198011 and 2017GXNSFDA198027) and Research Start-up Funds Doctor of Guilin University of Technology (No. GUTQDJJ2017133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, X., Yan, X. et al. Excellent thermal stability and low dielectric loss of (Ba1 − xBi0.5xSr0.5x)(Ti1 − xBi0.5xZr0.5x)O3 solid solution ceramics in a broad temperature range applied in X8R. Appl. Phys. A 124, 771 (2018). https://doi.org/10.1007/s00339-018-2194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2194-0

Navigation