Skip to main content
Log in

Charge transfer induced tunable bandgap and enhanced saturable absorption behavior in rGO/WO3 composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this present work, we synthesized reduced graphene oxide/Tungsten trioxide (rGO/WO3) nanocomposites through hydrothermal method. We discussed the implication of charge transfer between Tungsten trioxide (WO3) and reduced graphene oxide (rGO) through steady-state fluorescence quenching with fitting. In addition, we report nonlinear optical (NLO) properties of GO, WO3 and rGO/WO3 at 532 nm employing the open aperture Z Scan technique. UV spectroscopy reveals the bandgap variation due to rGO addition. The rGO/WO3 nanohybrids shows the low saturation intensity Is and 0.5 × 1011 W/m2 compared to the WO3 saturation intensity Is ~ 1 × 1013 W/m2. The results displays that the effective charge transfer between WO3 and rGO leads to the band-gap variation and enhances the SA performance of the nanohybrids. Results shows that these nanohybrids are potentially useful for mode locking, optical switching and as a saturable absorber. Moreover, the structural property was confirmed by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) images supports the nanohybrids as nanorods and vibrational properties were analyzed by Fourier transformed Infrared Spectroscopy (FTIR) technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Pittman, Y. Shih, D. Strekalov, A. Sergienko, Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429 (1995)

    ADS  Google Scholar 

  2. T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010)

    Google Scholar 

  3. K.R. Casey, W.R. Fairfax, S.J. Smith, J.A. Dixon, Intratracheal fire ignited by the Nd-YAG laser during treatment of tracheal stenosis. Chest 84, 295–296 (1983

    Google Scholar 

  4. B. Zhang, G. Li, M. Chen, Z. Zhang, Y. Wang, Passive mode locking of a diode-end-pumped Nd:GdVO4 laser with a semiconductor saturable absorber mirror. Opt. Lett. 28, 1829–1831 (2003)

    ADS  Google Scholar 

  5. Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang et al., A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21, 1275–1279 (2009)

    Google Scholar 

  6. S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials. Chem. Rev. 100, 1777–1788 (2000)

    Google Scholar 

  7. Y.C. Chen, N.R. Raravikar, L.S. Schadler, P.M. Ajayan, Y.P. Zhao, T.M. Lu et al., Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm. Appl. Phys. Lett. 81, 975–977 (2002)

    ADS  Google Scholar 

  8. M. Kavitha, H. John, P. Gopinath, R. Philip, Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties. J. Mater. Chem. C 1, 3669–3676 (2013)

    Google Scholar 

  9. W. Song, C. He, W. Zhang, Y. Gao, Y. Yang, Y. Wu et al., Synthesis and nonlinear optical properties of reduced graphene oxide hybrid material covalently functionalized with zinc phthalocyanine. Carbon 77, 1020–1030 (2014)

    Google Scholar 

  10. Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, J. Tian, Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl. Phys. Lett. 94, 021902 (2009)

    ADS  Google Scholar 

  11. S. Perumbilavil, A. López-Ortega, G.K. Tiwari, J. Nogués, T. Endo, R. Philip, Enhanced ultrafast nonlinear optical response in ferrite core/shell nanostructures with excellent optical limiting performance. Small 14, 1701001 (2018)

    Google Scholar 

  12. S. Perumbilavil, K. Sridharan, D. Koushik, P. Sankar, V.M. Pillai, R. Philip, Ultrafast and short pulse optical nonlinearity in isolated, sparingly sulfonated water soluble graphene. Carbon 111, 283–290 (2017)

    Google Scholar 

  13. P. Uppachai, V. Harnchana, S. Pimanpang, V. Amornkitbamrung, A.P. Brown, R.M. Brydson, A substoichiometric tungsten oxide catalyst provides a sustainable and efficient counter electrode for dye-sensitized solar cells. Electrochim. Acta 145, 27–33 (2014)

    Google Scholar 

  14. S.M. Kanan, Z. Lu, J.K. Cox, G. Bernhardt, C.P. Tripp, Identification of surface sites on monoclinic WO3 powders by infrared spectroscopy. Langmuir 18, 1707–1712, (2002)

    Google Scholar 

  15. R. Diehl, G. Brandt, E. Salje, The crystal structure of triclinic WO3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 34, 1105–1111 (1978)

    Google Scholar 

  16. S. Balaji, Y. Djaoued, A.-S. Albert, R. Brüning, N. Beaudoin, J. Robichaud, Porous orthorhombic tungsten oxide thin films: synthesis, characterization, and application in electrochromic and photochromic devices. J. Mater. Chem. 21, 3940–3948 (2011)

    Google Scholar 

  17. K. Locherer, I. Swainson, E. Salje, Transition to a new tetragonal phase of WO3: crystal structure and distortion parameters. J. Phys. Condens. Matter. 11, 4143 (1999)

    ADS  Google Scholar 

  18. K. Huang, Q. Pan, F. Yang, S. Ni, X. Wei, D. He, Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D Appl. Phys. 41, 155417 (2008)

    ADS  Google Scholar 

  19. N.M. Vuong, D. Kim, H. Kim, Porous Au-embedded WO3 nanowire structure for efficient detection of CH4 and H2S. Sci Rep 5, 11040 (2015)

    ADS  Google Scholar 

  20. J. Wang, E. Khoo, P.S. Lee, J. Ma, Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J. Phys. Chem. C 112, 14306–14312 (2008)

    Google Scholar 

  21. Y. Shigesato, Photochromic properties of amorphous WO3 films. Jpn. J. Appl. Phys. 30, 1457 (1991)

    ADS  Google Scholar 

  22. L. Ying-Tao, L. Shi-Bing, L. Hang-Bing, L. Qi, W. Qin, W. Yan et al., Investigation of resistive switching behaviours in WO3-based RRAM devices. Chin. Phys. B 20, 017305 (2011)

    ADS  Google Scholar 

  23. H. Swaminathan, V. Ramar, B. Karthikeyan, Excited state electron, energy transfer dynamics between 2D MoS2 and GO, RGO for turn ON BSA, HSA sensing. J. Phys. Chem. C 121, 12585–12592 (2017)

    Google Scholar 

  24. M.E. Khan, M.M. Khan, M.H. Cho, CdS-graphene nanocomposite for efficient visible-light-driven photocatalytic and photoelectrochemical applications. J. Colloid Interfaces Sci. 482, 221–232 (2016)

    ADS  Google Scholar 

  25. M.E. Khan, M.M. Khan, M.H. Cho, Defected graphene nano-platelets for enhanced hydrophilic nature and visible light-induced photoelectrochemical performances. J. Phys. Chem. Solids 104, 233–242 (2017)

    ADS  Google Scholar 

  26. M. Rakibuddin, H. Kim, M.E. Khan, Graphite-like carbon nitride (C 3 N 4) modified N-doped LaTiO 3 nanocomposite for higher visible light photocatalytic and photo-electrochemical performance. Appl. Surf. Sci. 452, 400–412 (2018)

    ADS  Google Scholar 

  27. S. Thangavel, M. Elayaperumal, G. Venugopal, Synthesis and properties of tungsten oxide and reduced graphene oxide nanocomposites. Mater. Express 2, 327–334 (2012)

    Google Scholar 

  28. S. Perumbilavil, P. Sankar, T.Priya Rose, R. Philip, White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region. Appl. Phys. Lett. 107, 051104 (2015)

    ADS  Google Scholar 

  29. R. Vemuri, M.H. Engelhard, C. Ramana, Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films. ACS Appl. Mater. Interfaces 4, 1371–1377 (2012)

    Google Scholar 

  30. F. Wang, C. Di Valentin, G. Pacchioni, Semiconductor-to-metal transition in WO3–x: nature of the oxygen vacancy. Phys. Rev. B 84, 073103 (2011)

    ADS  Google Scholar 

  31. Y. Shen, P. Yan, Y. Yang, F. Hu, Y. Xiao, L. Pan et al., Hydrothermal synthesis and studies on photochromic properties of Al doped WO3 powder. J. Alloy. Compd. 629, 27–31 (2015)

    Google Scholar 

  32. S. Saha, M. Jana, P. Khanra, P. Samanta, H. Koo, N.C. Murmu et al., Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Appl. Mater. Interfaces. 7, 14211–14222 (2015)

    Google Scholar 

  33. M. Jalil, S.S. Chowdhury, M. Alam Sakib, S. Enamul Hoque Yousuf, E. Khan Ashik, S.H. Firoz et al., Temperature-dependent phase transition and comparative investigation on enhanced magnetic and optical properties between sillenite and perovskite bismuth ferrite-rGO nanocomposites. J. Appl. Phys. 122, 084902 (2017)

    ADS  Google Scholar 

  34. F. Zheng, M. Guo, M. Zhang, Hydrothermal preparation and optical properties of orientation-controlled WO3 nanorod arrays on ITO substrates. CrystEngComm 15, 277–284 (2013)

    Google Scholar 

  35. M.E. Khan, M.M. Khan, M.H. Cho, Ce 3+-ion, surface oxygen vacancy, and visible light-induced photocatalytic dye degradation and photocapacitive performance of CeO 2-graphene nanostructures. Sci. Rep. 7, 5928 (2017)

    ADS  Google Scholar 

  36. M.E. Khan, M.M. Khan, B.-K. Min, M.H. Cho, Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Sci. Rep. 8, 1723 (2018)

    ADS  Google Scholar 

  37. M.M. Khan, S.F. Adil, A. Al-Mayouf, Metal Oxides as Photocatalysts (Elsevier, Amsterdam, 2015)

    Google Scholar 

  38. M.M. Khan, S.A. Ansari, M.E. Khan, M.O. Ansari, B.-K. Min, M.H. Cho, Visible light-induced enhanced photoelectrochemical and photocatalytic studies of gold decorated SnO2 nanostructures. New J. Chem. 39, 2758–2766 (2015)

    Google Scholar 

  39. M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, J. Lee, M.H. Cho, Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A 2, 637–644 (2014)

    Google Scholar 

  40. M. Gerosa, C. Di Valentin, G. Onida, C.E. Bottani, G. Pacchioni, Anisotropic effects of oxygen vacancies on electrochromic properties and conductivity of γ-monoclinic WO3. J. Phys. Chem. C 120, 11716–11726 (2016)

    Google Scholar 

  41. H. Liu, F. Zeng, Y. Lin, G. Wang, F. Pan, Correlation of oxygen vacancy variations to band gap changes in epitaxial ZnO thin films. Appl. Phys. Lett. 102, 181908 (2013)

    ADS  Google Scholar 

  42. J. Liu, J. Ke, D. Li, H. Sun, P. Liang, X. Duan et al., Oxygen vacancies in shape controlled Cu2O/reduced graphene oxide/In2O3 hybrid for promoted photocatalytic water oxidation and degradation of environmental pollutants. ACS Appl. Mater. Interfaces 9, 11678–11688 (2017)

    Google Scholar 

  43. E.-S. Jang, J.Y. Bae, J. Yoo, W.I. Park, D.-W. Kim, G.-C. Yi et al., Quantum confinement effect in ZnO/Mg0.2Zn0.8O multishell nanorod heterostructures. Appl. Phys. Lett. 88, 023102 (2006)

    ADS  Google Scholar 

  44. M.E. Khan, M.M. Khan, M.H. Cho, Green synthesis, photocatalytic and photoelectrochemical performance of an Au–Graphene nanocomposite. RSC Adv. 5, 26897–26904 (2015)

    Google Scholar 

  45. M.E. Khan, M.M. Khan, M.H. Cho, Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New J. Chem. 39, 8121–8129 (2015)

    Google Scholar 

  46. M.E. Khan, M.M. Khan, M.H. Cho, “Recent progress of metal-graphene nanostructures in photocatalysis. Nanoscale 10, 9427–9440 (2018)

    Google Scholar 

  47. M.E. Khan, M.M. Khan, M.H. Cho, Fabrication of WO3 nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance. RSC Adv. 6, 20824–20833 (2016)

    Google Scholar 

  48. M.E. Khan, M.M. Khan, M.H. Cho, Environmentally sustainable biogenic fabrication of AuNP decorated-graphitic gC3 N4 nanostructures towards improved photoelectrochemical performances. RSC Adv. 8, 13898–13909 (2018)

    Google Scholar 

  49. M.E. Khan, T.H. Han, M.M. Khan, M.R. Karim, M.H. Cho, Environmentally sustainable fabrication of Ag@g-C3N4 nanostructures and their multifunctional efficacy as antibacterial agents and photocatalysts. ACS Appl. Nano Mater. 1(6), 2912–2922 (2018)

    Google Scholar 

  50. T. Lv, L. Pan, X. Liu, Z. Sun, Enhanced photocatalytic degradation of methylene blue by ZnO–reduced graphene oxide–carbon nanotube composites synthesized via microwave-assisted reaction. Catal. Sci. Technol. 2, 2297–2301 (2012)

    Google Scholar 

  51. Y.T. Liang, B.K. Vijayan, O. Lyandres, K.A. Gray, M.C. Hersam, Effect of dimensionality on the photocatalytic behavior of carbon–titania nanosheet composites: charge transfer at nanomaterial interfaces. J. Phys. Chem. Lett. 3, 1760–1765 (2012)

    Google Scholar 

  52. K. Zhou, Y. Zhu, X. Yang, X. Jiang, C. Li, Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J. Chem. 35, 353–359 (2011)

    Google Scholar 

  53. J.Y. Luo, F.L. Zhao, L. Gong, H.J. Chen, J. Zhou, Z.L. Li et al., Ultraviolet-visible emission from three-dimensional WO3-x nanowire networks. Appl. Phys. Lett. 91, 093124 (2007)

    ADS  Google Scholar 

  54. T. Gao, B.P. Jelle, Visible-light-driven photochromism of hexagonal sodium tungsten bronze nanorods. J. Phys. Chem. C 117, 13753–13761 (2013)

    Google Scholar 

  55. M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao et al., Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films. J. Phys. Chem. C 121, 27147–27153 (2017)

    Google Scholar 

  56. J. Wang, Y. Chen, W.J. Blau, Carbon nanotubes and nanotube composites for nonlinear optical devices. J. Mater. Chem. 19, 7425–7443 (2009)

    Google Scholar 

  57. A.N. Gowda, M. Kumar, A.R. Thomas, R. Philip, S. Kumar, Self-assembly of silver and gold nanoparticles in a metal-free phthalocyanine liquid crystalline matrix: structural, thermal, electrical and nonlinear optical characterization. ChemistrySelect 1, 1361–1370 (2016)

    Google Scholar 

  58. R.L. Sutherland, Handbook of Nonlinear Optics, (CRC press, Boca Raton, 2003)

    Google Scholar 

  59. R. Udayabhaskar, M.S. Ollakkan, B. Karthikeyan, Preparation, optical and non-linear optical power limiting properties of Cu, CuNi nanowires. Appl. Phys. Lett. 104, 013107 (2014)

    ADS  Google Scholar 

  60. B. Anand, R. Podila, P. Ayala, L. Oliveira, R. Philip, S.S.S. Sai et al., Nonlinear optical properties of boron doped single-walled carbon nanotubes. Nanoscale 5, 7271–7276 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan Balasubramanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramar, V., Balasubramanian, K. Charge transfer induced tunable bandgap and enhanced saturable absorption behavior in rGO/WO3 composites. Appl. Phys. A 124, 779 (2018). https://doi.org/10.1007/s00339-018-2191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2191-3

Navigation