Skip to main content
Log in

Crystal growth, physical properties, and theoretical investigation on organic acentric single crystal towards efficient second-order NLO applications: Triphenylguanidine

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel organic nonlinear optical crystal Triphenylguanidine (TPG) was grown by the solvent evaporation method. Single-crystal X-ray diffraction (XRD) studies showed that the TPG compound crystallizes in orthorhombic crystal system with Pna21 space group and the corresponding lattice planes of reflections were indexed using powder XRD studies. Fourier transform infrared and Fourier transform Raman studies revealed the presence of various functional groups in the TPG crystal. The molecular structure of TPG was also confirmed using the NMR studies. UV–Vis studies validate the aptness of TPG crystal towards nonlinear optical applications. TPG crystal shows blue emission from photoluminescence studies. The mechanical stability of the grown crystal was identified using Vickers microhardness studies. Dielectric studies were carried out as a function of frequency at room temperature. Powder SHG effective nonlinearity of TPG crystal is about 2.3 times that of standard KDP. The thermal stability of TPG crystal was investigated by the TG-DTA studies. Using Gaussian 03 program the HOMO–LUMO energy gap and first-order hyperpolarizability value for TPG molecule were calculated. The calculated first-order hyperpolarizability value of TPG molecule is 17 times that of urea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.S. Nagaraja, V. Upadhyaya, P.M. Rao, P.S. Aithal, A.P. Bhatt, J. Cryst. Growth 193, 674–678 (1998)

    ADS  Google Scholar 

  2. M.R.S. Kumar, H.J. Ravindra, A. Jayarama, S.M. Dharmaprakash, J. Cryst. Growth 286, 451–456 (2006)

    ADS  Google Scholar 

  3. P. Srinivasan, M. Gunasekaran, T. Kanagasekaran, R. Gopalakrishnan, P. Ramasamy, J. Cryst. Growth 289, 639–646 (2006)

    ADS  Google Scholar 

  4. N. Vijayan, G. Bhagavannarayana, R.R. Babu, R. Gopalakrishnan, K.K. Maurya, P. Ramasamy, Cryst. Growth Des. 6, 1542–1546 (2006)

    Google Scholar 

  5. S. Suresh, A. Ramanand, D. Jayaraman, P. Mani, Rev. Adv. Mater. Sci 30, 175–183 (2012)

    Google Scholar 

  6. D. Xu, M. Xiang, Z. Tan, Acta Chim. Sin 41, 570–573 (1983)

    Google Scholar 

  7. K. Thukral, N. Vijayan, M. Vij, C.M. Nagaraja, V. Jayaramakrishnan, M.S. Jayalakshmy, R. Kant, Mat. Chem. Phys 194, 90–96 (2017)

    Google Scholar 

  8. P.S.P. Silva, M.A.P. Goncalves, M.R. Silva, A. Zawadzka, B. Sahraoui, J.A. Paixao, J. Opt. Mat 84, 606–613 (2018)

    Google Scholar 

  9. V. Nagarajan, A.J.N. Ananth, S. Ramaswamy, Cryst. Res. Technol. 53, 1700217 (2018)

    Google Scholar 

  10. S.R. Marder, J.W. Perry, W.P. Schaefer, Science 245, 626 (1989)

    ADS  Google Scholar 

  11. P.J. Lacroix, R. Clement, K. Nakatani, J. Zyss, I. Ledoux, Science 263, 658 (1994)

    ADS  Google Scholar 

  12. P.S.P. Silva, C. Cardoso, M.R. Silva, J.A. Paixao, A.M. Beja, M.H. Garcia, N. Lopes, J. Phys. Chem. A 114, 2607–2617 (2010)

    Google Scholar 

  13. U. Venkataramudu, C. Sahoo, S. Leelashree, M. Venkatesh, D. Ganesh, S.R.G. Naraharisetty, A.K. Chaudhary, S. Srinath, R. Chandrasekar, J. Mater. Chem. C (2018) https://doi.org/10.1039/C8TC02638F

    Article  Google Scholar 

  14. S.D. Chemla, J. Zyss, Nonlinear optical properties of organic molecules and crystals, Vol. 1. Academic press, Orlando (1987)

    Google Scholar 

  15. J. Zyss, Molecular nonlinear optics. Materials, physics and devices. Academic press, Boston (1994)

    Google Scholar 

  16. A. Georgieva, N. Mintcheva, N. Trendafilova, M. Mitewa, Vib Spectrosc 27, 153–164 (2001)

    Google Scholar 

  17. J. Zyss, J. Pecaut, J.P. Levy, R. Masse, Acta Crystllogr., Sect. B 49, 334–342 (1993)

    Google Scholar 

  18. P.S.P. Silva, M.A.P. Goncalves, M.R. Silva, J.A. Paixao, Spectrochim. Acta, Part A 172, 156–162 (2017)

    ADS  Google Scholar 

  19. K.T. Ma, N. Tin, G.P.A. Thirupathi, D.S. Yap, Richeson, J. Chem. Soc. Dalton Trans, (1999) 2947–2951

  20. C. Cardoso, P.S.P. Silva, M.R. Silva, A.M. Beja, J.A. Paixao, F. Nogueira, A.J.F.N. Sobral, J. Mol. Struct 878, 169–176 (2008)

    ADS  Google Scholar 

  21. P.S.P. Silva, C. Cardoso, M.R. Silva, J.A. Paixao, A.M. Beja, F. Nogueira, J. Mol. Struct 888, 92–98 (2008)

    ADS  Google Scholar 

  22. E. Bravais, Crystallographiques, Academie des Sciences, Paris, 1913

  23. C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. Van De Streek, P.A. Wood, Mercury CSD 2.0-New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41, 466–470 (2008)

    Google Scholar 

  24. C.F. Macrae, P.R. Edington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J.V.D. Streek, J. Appl. Cryst 39, 453 (2006). Mercury (version1.4.1)

    Google Scholar 

  25. G. SaravanaKumar, P. Murugakoothan, Spectrochim. Acta, Part A 131, 17–21 (2014)

    ADS  Google Scholar 

  26. M.S. Kajamuhideen, K. Sethuraman, K. Ramamurthi, P. Ramasamy, J. Cryst. Growth 483, 16–25 (2018)

    ADS  Google Scholar 

  27. J. Coates, Encyclopedia of Analytical chemistry, John Wiley and sons, (2006) 1–23

  28. N.Y. Maharani, A.C. Peter, S. Gopinath, S. Tamilselvan, M. Vimalan, I.V. Potheher, J. Mater. Sci.: Mater. Electron. 27, 5006 (2016)

    Google Scholar 

  29. T. Balakrishnan, S. Sathiskumar, K. Ramamurthi, S. Thamotharan, Mat. Chem. Phys 186, 115–123 (2017)

    Google Scholar 

  30. K. Nivetha, S. Kalainathan, M. Yamada, Y. Kondo, F. Hamada, Mat. Chem. Phys 188, 131–142 (2017)

    Google Scholar 

  31. M. Bass, Handbook of optics. Tata McGraw-Hill companies, inc., vol IV, 5.70–5.83 (2010)

  32. S.S. Priya, A. Alexandar, P. Surendran, A. Lakshman, P. Rameshkumar, P. Sagayaraj, J. Opt. Mat 66, 434–441 (2017)

    Google Scholar 

  33. P. Jayaprakash, M.P. Mohamed, M.L. Caroline, J. Mol. Struct 1134, 67–77 (2017)

    ADS  Google Scholar 

  34. R.M. Mohamed, M.K. Mishra, L.M. Al-Harbi, M.S. AlGhamdi, A.M. Asiri, C.M. Reddy, U. Ramamurty, Cryst. Growth Des. 15, 2479 (2015)

    Google Scholar 

  35. E.M. Onistch, Mikroscopie, 2 (1947) 131–151

  36. R. Mekala, R. Mani, I.B. Rietveld, P. Jagdish, R. Mathammal, H. Jiang, Cryst. Eng. Commun. 18, 8194–8206 (2016)

    Google Scholar 

  37. N. Ponpandian, P. Balayya, A. Narayanasamy, J. Phys.: Condens. Matter 14, 3221–3237 (2002)

    ADS  Google Scholar 

  38. C.M. Tu, L.H. Chou, Y.C. Chen, P. Huang, M. Rajaboopathi, C.W. Luo, K.H. Wu, V. Krishnakumar, T. Kobayashi, Opt. Express 24, 5039–5044 (2016)

    ADS  Google Scholar 

  39. V. Krishnakumar, M. Rajaboopathi, R. Nagalakshmi, Phys. B 407, 1119–1123 (2012)

    ADS  Google Scholar 

  40. K. Shanming, H. Haitao, F. Huiqing, Appl. Phys. Lett. 89, 182904–182907 (2006)

    Google Scholar 

  41. L. Zhuo, F. Huiqing, J. Appl. Phys. 106, 054102 (2009)

    Google Scholar 

  42. S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798 (1968)

    ADS  Google Scholar 

  43. M. Krishnakumar, S. Karthick, K. Thirupugalmani, S. Brahadeeswaran, J. Opt. Mat 66, 79–93 (2017)

    Google Scholar 

  44. K. Boopathi, R. Jagan, P. Ramasamy, Appl. Phys. A 122, 1 (2016)

    Google Scholar 

  45. B. Babu, J. Chandrasekaran, R. Thirumurugan, K. Anitha, M. Saravanabhavan, J. Mater. Sci.: Mater. Electron. 28, 9704–9716 (2017)

    Google Scholar 

  46. M.S. Kajamuhideen, K. Sethuraman, K. Ramamurthi, P. Ramasamy, Opt. Laser. Technol 91, 159–165 (2017)

    ADS  Google Scholar 

  47. A. Silambarasan, P. Rajesh, P. Ramasamy, Spectrochimica acta part A: molecular and biomolecular spectroscopy, 118 (2014) 24–27

    ADS  Google Scholar 

  48. N. Vijayan, K. Nagarajan, A.M.Z. Slawin, C.K.S. Nair, G. Bhagavannarayana, Crystal Growth Des. 7, 445–448 (2007)

    Google Scholar 

  49. R. Thirumurugan, K. Anitha, J. Mol. Struct 1146, 273–284 (2017)

    ADS  Google Scholar 

  50. J. Jayabharathi, V. Thanikachalam, K. Saravanan, N. Srinivasan, M.V. Perumal, Spectrochim. Acta A 78, 794–802 (2012)

    ADS  Google Scholar 

  51. J.F. Nye, Physical properties of crystals (Clarendon press, Oxford, 1960)

    Google Scholar 

  52. F. Zernike, J.E. Midwinter, Applied nonlinear optics (Wiley, Newyork, 1973)

    Google Scholar 

  53. Y.R. Sharma, Elementary organic spectroscopic principles and chemical applications (S. Chand & co, New Delhi, 2004)

    Google Scholar 

  54. D.A. Kleinman, Phys. Rev. 126, 1977–1979 (1962)

    ADS  Google Scholar 

  55. H. Chermette, J. Comput. Chem. 20, 129–154 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sethuraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajamuhideen, M.S., Sethuraman, K. & Ramamurthi, K. Crystal growth, physical properties, and theoretical investigation on organic acentric single crystal towards efficient second-order NLO applications: Triphenylguanidine. Appl. Phys. A 124, 764 (2018). https://doi.org/10.1007/s00339-018-2190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2190-4

Navigation