Synthesis of graphitic carbon nitride via direct polymerization using different precursors and its application in lithium–sulfur batteries


The graphitic carbon nitride (g-C3N4) materials were prepared via direct polymerization of urea, melamine, thiourea, and dicyandiamide at the same conditions, respectively. The samples were tested by various characterization tools, so that to study the influences of precursors on the physical and electrochemical properties of g-C3N4. The results showed that the as-prepared U-CN (from urea), M-CN (from melamine), T-CN (from thiourea), and D-CN (from dicyandiamide) exhibited significantly different microstructures. The synthesized g-C3N4 powders were used as sulfur matrixes for lithium–sulfur batteries. The electrochemical properties revealed that urea-derived C3N4 showed the highest initial capacity of 1207 mAh g−1. Furthermore, it possesses excellent cycling stability for 500 cycles and remains capacity of 517 mAh g−1 at 0.37 mA cm−2. This work could provide a new perspective for the selection of proper precursors and the in-depth study of the electrochemical behaviors of the microstructure of g-C3N4.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    G. Jeong, Y.U. Kim, H. Kim, Y.J. Kim, H.J. Sohn, Prospective materials and applications for Li secondary batteries. Energy Environ. Sci 4, 1986–2002 (2011)

    Google Scholar 

  2. 2.

    K.A. Kurilenko, O.A. Shlyakhtin, O.A. Brylev, D.I. Petukhov, A.V. Garshev, Effect of nanostructured carbon coatings on the electrochemical performance of Li1.4Ni0.5Mn0.5O2+x-based cathode materials. Beilstein J. Nanothechnol. 7, 1960–1970 (2016)

    Google Scholar 

  3. 3.

    J.Q. Li, C. Han, M.X. Jing, H. Yang, X.Q. Shen, S.B. Qin, Flake-like oxygen-deficient lithium vanadium oxides as a high ionic and electronic conductive cathode materials for high power Li-ion battery. Appl. Phys. A 124, 450 (2018)

    ADS  Google Scholar 

  4. 4.

    B.Y. Sun, Q.L. Liu, W.S. Chen, N. Wang, J.J. Gu, W. Zhang, H.L. Su, D. Zhang, Micron-sized encapsulated-type MoS2/C hybrid particles with an effective confinement effect for improving the cycling performance of LIB anodes. J. Mater. Chem. A 6, 6289–6298 (2018)

    Google Scholar 

  5. 5.

    N. Wang, Q.L. Liu, B.Y. Sun, J.J. Gu, B.X. Yu, W. Zhang, D. Zhang, N-doped catalytic graphitized hard carbon for high-performance lithium/sodium-ion batteries. Sci. Rep. UK 8, 9934 (2018)

    ADS  Google Scholar 

  6. 6.

    D.M. Kang, Q.L. Liu, M. Chen, J.J. Gu, D. Zhang, Spontaneous cross-linking for fabrication of nanohybrids embedded with size-controllable particles. ACS Nano 10, 889–898 (2016)

    Google Scholar 

  7. 7.

    R. Zhuang, S. Yao, M. Jing, X. Shen, T. Li, S. Qin, Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications. Beilstein J. Nanothechnol. 9, 262–270 (2018)

    Google Scholar 

  8. 8.

    J. Liu, W. Li, L. Duan, X. Li, L. Ji, Z. Geng, K. Huang, L. Lu, A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 15, 5137–5142 (2015)

    ADS  Google Scholar 

  9. 9.

    H. Tang, S. Yao, M. Jing, X. Wu, J. Hou, X. Qian, D. Rao, Q. Shen, Nickel fibers/sulfur composites cathode with enhanced electrochemical performance for rechargeable lithium-sulfur batteries. Electrochim. Acta 176, 442–447 (2015)

    Google Scholar 

  10. 10.

    H.L. Lee, Z. Sofer, V. Mazanek, J. Luxa, C.K. Chua, M. Pumera, Graphitic carbon nitride: effects of various precursors on the structural, morphological and electrochemical sensing properties. Appl. Mater. Today 8, 150–162 (2017)

    Google Scholar 

  11. 11.

    L. Ma, K.E. Hendrickson, S. Wei, L.A. Archer, Nanomaterials: Science and applications in the lithium–sulfur battery. Nano Today 10, 315–338 (2015)

    Google Scholar 

  12. 12.

    Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016)

    ADS  Google Scholar 

  13. 13.

    J.L. Hou, S.S. Yao, X. Wu, M.X. Jing, D.W. Rao, X.Q. Shen, X.M. Xi, K.S. Xiao, Fabrication and characterization of non-woven carbon nanofibers as functional interlayer for rechargeable lithium sulfur battery. J. Nanosci. Nanotechnol. 17, 1857–1862 (2017)

    Google Scholar 

  14. 14.

    M. Barghamadi, A.S. Best, A.I. Bhatt, A.F. Hollenkamp, P.J. Mahon, M. Musameh, T. Rjither, Effect of LiNO3 additive and pyrrolidinium ionic liquid on the solid electrolyte interphase in the lithium–sulfur battery. J. Power Sources 295, 212–220 (2015)

    ADS  Google Scholar 

  15. 15.

    H.J. Peng, D.W. Wang, J.Q. Huang, X.B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries. Adv. Sci. 3, 1500268 (2016)

    Google Scholar 

  16. 16.

    Y.J. Li, J.M. Fan, M.S. Zheng, Q.F. Dong, A novel synergistic composite with multi-functional effects for high-performance Li–S batteries. Energy Environ. Sci. 9, 1998–2004 (2016)

    Google Scholar 

  17. 17.

    X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015)

    ADS  Google Scholar 

  18. 18.

    X.Q. Zhang, B. He, W.C. Li, A.H. Lu, Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 11(3), 1238–1246 (2018)

    ADS  Google Scholar 

  19. 19.

    H. Li, X. Yang, X. Wang, M. Liu, F. Ye, J. Wang, Y. Zhang, Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy 12, 468–475 (2015)

    Google Scholar 

  20. 20.

    J. Song, M.L. Gordin, T. Xu, S. Chen, Z. Yu, H. Sohn, D. Wang, Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew. Chem. Int. Ed. 54, 4325–4329 (2015)

    Google Scholar 

  21. 21.

    J.Q. Huang, Z.L. Xu, S. Abouali, M.A. Garakani, J.K. Kim, Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon 99, 624–632 (2016)

    Google Scholar 

  22. 22.

    S.S. Yao, S.K. Xue, Y.J. Zhang, X.Q. Shen, X.Y. Qian, T.B. Li, K.S. Xiao, S.B. Qin, J. Xiang, Synthesis, characterization, and electrochemical performance of spherical nanostructure of Magnéli phase Ti4O7. J. Mater. Sci. Mater. Electron. 28, 7264–7270 (2017)

    Google Scholar 

  23. 23.

    K. Chen, Z. Sun, R. Fang, Y. Shi, H.M. Cheng, F. Li, Metal–organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 1707592 (2018)

    Google Scholar 

  24. 24.

    M. Zhang, C. Yu, C. Zhao, X. Song, X. Han, S. Liu, J. Qiu, Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery. Energy Storage Mater. 5, 223–229 (2016)

    Google Scholar 

  25. 25.

    Y. Qiu, W. Li, W. Zhao, G. Li, Y. Hou, M. Liu, S. Yang, High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 14, 4821–4827 (2014)

    ADS  Google Scholar 

  26. 26.

    X. Bu, J. Li, S. Yang, J. Sun, Y. Deng, Y. Yang, G. Ding, Surface modification of C3N4 through oxygen-plasma treatment: a simple way toward excellent hydrophilicity. ACS Appl. Mater. Interfaces 8, 31419–31425 (2016)

    Google Scholar 

  27. 27.

    G. Zhang, C. Huang, X. Wang, Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small 11, 1215–1221 (2015)

    Google Scholar 

  28. 28.

    Z. Zhang, K. Leinenweber, M. Bauer, L.A. Garvie, P.F. McMillan, G.H. Wolf, High-pressure bulk synthesis of crystalline C6N9H3·HCl: a novel C3N4 graphitic derivative. J. Am. Chem. 123, 7788–7796 (2001)

    Google Scholar 

  29. 29.

    H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, H. Wan, Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl. Catal B Environ. 129, 182–193 (2013)

    Google Scholar 

  30. 30.

    P.K. Chuang, K.H. Wu, T.F. Yeh, H. Teng, Extending the π-conjugation of g-C3N4 by incorporating aromatic carbon for photocatalytic H2 evolution from aqueous solution. ACS Sustain. Chem. Eng. 227, 153–160 (2016)

    Google Scholar 

  31. 31.

    L. Stagi, D. Chiriu, C.M. Carbonaro, R. Corpino, P.C. Ricci, Structural and optical properties of carbon nitride polymorphs. Diam. Relat. Mater. 68, 84–92 (2016)

    ADS  Google Scholar 

  32. 32.

    S.S. Yao, S.K. Xue, S. H.Peng, M.X. Jing, X.Y. Qian, X.Q. Shen, T.B. Li, Y.H. Wang, Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium sulfur batteries. J. Mater. Sci. Mater. Electron. 29, 17921–17930 (2018)

    Google Scholar 

  33. 33.

    Z. Zeng, H. Yu, X. Quan, S. Chen, S. Zhang, Structuring phase junction between tri-s-triazine and triazine crystalline C3N4 for efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 227, 153–160 (2018)

    Google Scholar 

  34. 34.

    M. Zhou, Z. Hou, L. Zhang, Y. Liu, Q. Gao, X. Chen, n/n junctioned g-C3N4 for enhanced photocatalytic H2 generation. Sustain. Energy Fuels 1, 317–323 (2017)

    Google Scholar 

  35. 35.

    Y. Li, Q.L. Liu, D.M. Kang, J.J. Gu, W. Zhang, D. Zhang, Free-drying assisted synthesis of hierarchical porous carbons for high-performance supercapacitors. J. Mater. Chem. A 3, 21016–21022 (2015)

    Google Scholar 

  36. 36.

    S. Panneri, P. Ganguly, B.N. Nair, A.A.P. Mohamed, K.G.K. Warrier, U.N.S. Hareesh, Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation. Environ. Sci. Pollut. R 24, 8609–8618 (2017)

    Google Scholar 

  37. 37.

    F.Y. Zhou, Q.L. Liu, D.M. Kang, J.J. Gu, W. Zhang, D. Zhang, A 3D hierarchical hybrid nanostructure of carbon nanotubes and activated carbon for high-performance supercapacitors. J. Mater. Chem. A 2, 3505–3512 (2014)

    Google Scholar 

  38. 38.

    J. Wang, J. Huang, H. Xie, A. Qu, Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H2 evolution by a simple method. Int. J. Hydrog. 39, 6354–6363 (2014)

    Google Scholar 

  39. 39.

    X. Tao, J. Wang, C. Liu, H. Yao, G. Zheng, C. Zu, Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 7, 11203 (2016)

    ADS  Google Scholar 

  40. 40.

    B. Li, C. Han, Y.B. He, C. Yang, H. Du, Q.H. Yang, F. Kang, Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ. Sci. 5, 9595–9602 (2012)

    Google Scholar 

  41. 41.

    K. Luan, S. Yao, Y. Zhang, R. Zhuang, J. Xiang, X. Shen, S. Qin, Poly (3, 4-ethyleendioxythiophene) coated titanium dioxide nanoparticles in situ synthesis and their application for rechargeable lithium sulfur batteries. Electrochim. Acta 252, 461–469 (2017)

    Google Scholar 

  42. 42.

    P. Mei, X.L. Wu, H. Xie, L. Sun, Y. Zeng, J. Zhang, C. Yao, LiV3O8 nanorods as cathode materials for high-power and long-life rechargeable lithium-ion batteries. RSC Adv. 4, 25494–25501 (2014)

    Google Scholar 

  43. 43.

    H. Tang, S. Yao, S. Xue, M. Liu, L. Chen, M. Jing, X. Shen, T. Li, K. Xiao, S. Qin, In-situ synthesis of carbon@Ti4O7 non-woven fabric as a multifunctional interlayer for excellent lithium sulfur battery. Electrochim. Acta 263, 158–167 (2018)

    Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51874146, 51504101), the China Postdoctoral Science Foundation (Grant Nos. 2018T110551, 2017M621640), the Six Talent Peaks Project of Jiangsu Province (XCL-125), the Natural Science Foundation of Jiangsu Province (Grant No. BK20150514), the Natural Science Foundation of Jiangsu Provincial Higher Education of China (Grant No. 15KJB430006), the Start-up Foundation of Jiangsu University for Senior Talents (Grant No. 15JDG014).

Author information



Corresponding author

Correspondence to Shanshan Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 784 KB)

Supplementary material 2 (AVI 1862 KB)

Supplementary material 2 (AVI 1862 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Xue, S., Peng, S. et al. Synthesis of graphitic carbon nitride via direct polymerization using different precursors and its application in lithium–sulfur batteries. Appl. Phys. A 124, 758 (2018).

Download citation