Skip to main content
Log in

Ni-doped MoS2 biosensor: a promising candidate for early diagnosis of lung cancer by exhaled breathe analysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Lung cancer prognosis in its early stage has received considerable attention due to its high incidence and mortality rates. This work proposed a novel candidate, Ni-doped MoS2, as a promising biosensor for lung cancer prognosis through exhaled breathe analysis, based on density functional theory (DFT) method. Calculated results indicated that Ni-MoS2 would have desirable adsorption performance towards three typical (volatile organic compounds) VOCs of lung cancer patients, leading to dramatic change in geometric and electronic property of Ni-doped monolayer. These subsequently could cause visible change in conductivity for Ni-MoS2 based bio-devices, giving rise to the sensing mechanism for its real application. In addition, desorption of these gas molecules from the Ni-MoS2 surface could be fulfilled through heating process, due to the determined physisorption in these adsorbing systems, which allows the recyclable use of the biosensors. Our calculations aim at proposing advanced sensing material for experimentalists to exploit potential progress in lung cancer prognosis through exhaled air detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Altintas, I. Tothill, Biomarkers and biosensors for the early diagnosis of lung cancer[J]. Sens. Actuators B Chem. 188(188), 988–998 (2013)

    Google Scholar 

  2. D. Huo, Y. Xu, C. Hou, M. Yang, H. Fa, A novel optical chemical sensor based AuNR-MTPP and dyes for lung cancer biomarkers in exhaled breath identification[J]. Sens. Actuators B Chem. 199(6), 446–456 (2014)

    Google Scholar 

  3. M. Varellagarcia, J. Kittelson, A.P. Schulte, K.O. Vu, H.J. Wolf, C. Zeng, F.R. Hirsch, T. Byers, T. Kennedy, Y.E. Miller, Multi-target interphase fluorescence in situ hybridization assay increases sensitivity of sputum cytology as a predictor of lung cancer[J]. Cancer Detect. Prev. 28(4), 244–251 (2004)

    Google Scholar 

  4. T. Kikuchi, D.P. Carbone, Proteomics analysis in lung cancer: challenges and opportunities[J]. Respirology 12(1), 22–28 (2007)

    Google Scholar 

  5. M. Lichy, P. Aschoff, C.A. Stemmer, W. Horger, C. Mueller-Horvat, G. Steidle, M. Horger, J. Schafer, S. Eschmann, B. Kiefer, Tumor detection by diffusion-weighted MRI and ADC-mapping-initial clinical experiences in comparison to PET-CT[J]. Invest. Radiol. 42(9), 605 (2007)

    Google Scholar 

  6. C.I. Henschke, F. David, Yankelevitz. CT screening for lung cancer[J]. Radiol. Clin. North Am. 49(4), 477–490 (2009)

    Google Scholar 

  7. V.H. Tran, H.P. Chan, M. Thurston, P. Jackson, C. Lewis, D. Yates, G. Bell, S. Paul, Thomas, Breath analysis of lung cancer patients using an electronic nose detection system[J]. IEEE Sens. J. 10(9), 1514–1518 (2010)

    ADS  Google Scholar 

  8. L. Pauling, A.B. Robinson, R. Teranishi, P. Cary, Quantitative Analysis of urine vapor and breath by gas-liquid partition chromatography[J]. Proc Natl Acad Sci USA 69(4), 2374–2376 (1971)

    ADS  Google Scholar 

  9. M. Phillips, Breath tests in medicine[J]. Sci. Am. 267(1), 74–79 (1992)

    ADS  Google Scholar 

  10. C. Xing, B.S. Ms, W.M. Fengjuan Xu, M.S. Yue, B.S. Yuefeng Pan, W. Deji Lu, M.D. Ping, M.D. Kejing Ying, M.S. Enguo Chen, W. Zhang, A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis[J]. Cancer 110(4), 835–844 (2007)

    Google Scholar 

  11. T. Itoh, T. Nakashima, T. Akamatsu, N. Izu, W. Shin, Nonanal gas sensing properties of platinum, palladium, and gold-loaded tin oxide VOCs sensors[J]. Sens. Actuators B Chem. 187(1), 135–141 (2013)

    Google Scholar 

  12. W. Miekisch, J.K. Schubert, F.E. Gabriele, Noeldge-Schomburg, Diagnostic potential of breath analysis—focus on volatile organic compounds[J]. Clin. Chim. Acta. 347(1), 25–39 (2004)

    Google Scholar 

  13. K. Jun. YuH. Young, Young, Baek. Inbok, Ahn. Changgeun, Lee. Bong Kuk, Kim. Yarkyeon, Yoon. Yong Sun, Lim. Ji Eun, Lee. Byeongjun, Jang. Won Ik. Use of Gas-Sensor Array Technology in Lung Cancer Diagnosis[J]. Journal of Sensor Science & Technology, 2013, 22 (4), 249–255

  14. Q. Wan, X. Zhang, Y. Gui, Theoretical study on Pt-doped carbon nanotubes used to detect typical exhaled gases of lung cancer[J]. J. Comput. Theor. Nanosci. 12(10), 3412–3417 (2015)

    Google Scholar 

  15. B. Bogusław, L. Tomasz, J. Tadeusz, W.-P. Anna, W. Marta, R. Joanna. Identification of volatile lung cancer markers by gas chromatography–mass spectrometry: comparison with discrimination by canines[J]. Anal. Bioanal. Chem. 404(1), 141–146 (2012)

    Google Scholar 

  16. Y. Wang, Y. Hu, D. Wang, K. Yu, L. Wang, Y. Zou, C. Zhao, X. Zhang, P. Wang, K. Ying, The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines[J]. Cancer Biomarkers 11(4), 129 (2012)

    Google Scholar 

  17. Q. Wan, Y. Xu, X. Chen, H. Xiao, Exhaled gas detection by a novel Rh-doped CNT biosensor for prediagnosis of lung cancer: a DFT study[J]. Mol. Phys. 116(17), 2205–2212 (2018)

    ADS  Google Scholar 

  18. K. Xu, H.Yan,C.Fu Tan, Y. Lu, Y. Li, G.W. Ho, R. Ji, M. Hong, Hedgehog inspired CuO nanowires/Cu2O composites for broadband visible-light-driven recyclable surface enhanced Raman scattering[J]. Adv. Opt. Mater. 5, 1701167 (2018)

    Google Scholar 

  19. Z. Zhen, Yu Wei, W. Jing, L. Dan, X. Qiao, X. Qin, T. Wang, Ultrasensitive surface-enhanced Raman scattering sensor of gaseous aldehydes as biomarkers of lung cancer on dendritic Ag nanocrystals[J]. Anal. Chem. 89(3), 1416 (2017)

    Google Scholar 

  20. M. Hakim, Y.Y. Broza, O. Barash, N. Peled, M. Phillips, A. Amann, H. Haick, Volatile organic compounds of lung cancer and possible biochemical pathways[J]. Chem. Rev. 112(11), 5949–5966 (2012)

    Google Scholar 

  21. T. Itoh, T. Miwa, A. Tsuruta, T. Akamatsu, N. Izu, W. Shin, J. Park, T. Hida, T. Eda, Y. Setoguchi, Development of an exhaled breath monitoring system with semiconductive gas sensors, a gas condenser unit, and gas chromatograph columns[J]. Sensors 16(11), 1891 (2016)

    Google Scholar 

  22. M. Phillips, N. Altorki, J.H. Austin, R.B. Cameron, R.N. Cataneo, J. Greenberg, R. Kloss, R.A. Maxfield, M.I. Munawar, H.I. Pass, Prediction of lung cancer using volatile biomarkers in breath[J]. Cancer Biomarkers 3(2), 95 (2007)

    Google Scholar 

  23. G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y.Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, Diagnosing lung cancer in exhaled breath using gold nanoparticles[J]. Nat. Nanotechnol. 4(10), 669–673 (2009)

    ADS  Google Scholar 

  24. A. Sharma, M.Shahid Anu, M. Khan, Husain, S. Khan, A. Srivastava. Sensing of CO and NO on Cu-doped MoS2 monolayer based single electron transistor: a first principles study[J]. IEEE Sens. J. 99:1–1 (2018)

    Google Scholar 

  25. M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, L. Ottaviano. Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors[J]. Sens. Actuators B Chem. 207, 602–613 (2015)

    Google Scholar 

  26. D. Zhang, J. Wu, P. Li, Y. Cao, Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation[J]. J. Mater. Chem. A 5, 39 (2017)

    ADS  Google Scholar 

  27. L. Kou, Tuning magnetism and electronic phase transitions by strain and electric field in zigzag MoS2 nanoribbons[J]. J. Phys. Chem. Lett. 3(20), 2934 (2012)

    Google Scholar 

  28. P. Wu, N. Yin, P. Li, W. Cheng, M. Huang, The adsorption and diffusion behavior of noble metal adatoms (Pd, Pt, Cu, Ag and Au) on a MoS2 monolayer: a first-principles study[J]. Phys. Chem. Chem. Phys. 19, (31) (2017)

    ADS  Google Scholar 

  29. Y. Fan, J. Zhang, Y. Qiu, J. Zhu, Y. Zhang, G. Hu, A DFT study of transition metal (Fe, Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption[J]. Comput. Mater. Sci. 138, 255–266 (2017)

    Google Scholar 

  30. Y. Li, X. Zhang, D. Chen, S. Xiao, J. Tang, Adsorption behavior of COF2 and CF4 gas on the MoS2 monolayer doped with Ni: a first-principles study[J]. Appl. Surf. Sci. 5, 443 (2018)

    Google Scholar 

  31. X. Zhangab, Y. Guiac, H. Xiaoa, Y. Zhang, Analysis of adsorption properties of typical partial discharge gases on Ni-SWCNTs using density functional theory[J]. Appl. Surf. Sci. 9, 47–54 (2016)

    ADS  Google Scholar 

  32. B. Delley, From molecules to solids with the DMol3 approach[J]. J. Chem. Phys. 113(18), 7756–7764 (2000)

    ADS  Google Scholar 

  33. H. Cui, X. Zhang, D. Chen, Ju Tang, Adsorption mechanism of SF6 decomposed species on pyridine-like PtN3 embedded CNT: A DFT study[J]. Appl. Surf. Sci. 32, 447 (2018)

    Google Scholar 

  34. B. Delley, Hardness conserving semilocal pseudopotentials[J]. Phys. Rev. B Condensed Matter 66(15), 155125 (2002)

    ADS  Google Scholar 

  35. A. Tkatchenko, R.A. Stasio, M. Head-Gordon, M. Scheffler, Dispersion-corrected Møller-Plesset second-order perturbation theory[J]. J Chem Phys 131(9), 171–171 (2009)

    Google Scholar 

  36. D. Chen, X. Zhang, J.U. Tang, H. Cui, Y. Li. Noble metal (Pt or Au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SOF2 and SO2F2 : a DFT study[J]. Appl. Phys. A Mater. Sci. Process. 124(2):194 (2018)

    ADS  Google Scholar 

  37. H. Cui, X. Zhang, J. Zhang, Ju Tang, Adsorption behaviour of SF6 decomposed species onto Pd4-decorated single-walled CNT: a DFT study[J]. Mol. Phys. 53, 1–7 (2018)

    Google Scholar 

  38. W. Ju, T. Li, X. Su, H. Li, X. Li, D. Ma, Au cluster adsorption on perfect and defective MoS2 monolayers: structural and electronic properties[J]. Phys. Chem Chem. Phys. 51:19 (2017)

    Google Scholar 

  39. R. Kronberg, M. Hakala, N. Holmberg, K. Laasonen, Hydrogen adsorption on MoS2-surfaces: a DFT study on preferential sites and the effect of sulfur and hydrogen coverage[J]. Phys. Chem. Chem. Phys. 19, 24 (2017)

    Google Scholar 

  40. D. Yang, S.J. Sandoval, W.M. Divigalpitiya, J.C. Irwin, Structure of single-molecular-layer MoS2[J]. Phys.Rev.B 43(14), 12053–12056 (1991)

    ADS  Google Scholar 

  41. A. Shokri, N. Salami, Gas sensor based on MoS2 monolayer[J]. Sens. Actuators B Chem. 236, 378–385 (2016)

    Google Scholar 

  42. L. Yuwen, F. Xu, B. Xue, Z. Luo, Q. Zhang, B. Bao, S. Su, L. Weng, W. Huang, L. Wang, General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation[J]. Nanoscale 6(11), 5762–5769 (2014)

    ADS  Google Scholar 

  43. D. Ma, W. Ju, T. Li, X. Zhang, C. He, B. Ma, Z. Lu, The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: A first-principles study[J]. Appl. Surf. Sci. 383, 98–105 (2016)

    ADS  Google Scholar 

  44. B. Zhao, C.Y. Li, L.L. Liu, B. Zhou, Q.K. Zhang, Z.Q. Chen, Z. Tang, Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: A first-principles study[J]. Appl. Surf. Sci. 382, 280–287 (2016)

    ADS  Google Scholar 

  45. S. Zhao, J. Xue, K. Wei, Gas adsorption on MoS2 monolayer from first-principles calculations[J]. Chem. Phys. Lett. 595–596(3). 35–42 (2014)

    ADS  Google Scholar 

  46. X. Zhang, H. Cui, D. Chen, X. Dong, Ju Tang, Electronic structure and H2S adsorption property of Pt3 cluster decorated (8, 0) SWCNT[J]. Appl. Surf. Sci. 2, 428 (2018)

    Google Scholar 

  47. A. De Jong, Sijbrand, J. Haas, G. Qian, D. Blazey, A. Hedin, Sanchezhernandez, Ann Heinson, Jose Guilherme Lima, Ronald Madaras, Arnaud Duperrin. Atomically thin MoS2: A new direct-gap semiconductor[J]. 2010

  48. A.S. Rad, S.S. Shabestari, S. Mohseni, Samaneh Alijantabar Aghouzi. Study on the adsorption properties of O3, SO2, and SO3 on B-doped graphene using DFT calculations[J]. J. Solid State Chem. 237, 204–210 (2016)

    ADS  Google Scholar 

  49. P. Pyykkö, M. Atsumi, Molecular single-bond covalent radii for elements 1-118[J]. Chemistry 15(1), 186–197 (2009)

    Google Scholar 

  50. S.W. Han, G.B. Cha, Y. Park, S.C. Hong, Hydrogen physisorption based on the dissociative hydrogen chemisorption at the sulphur vacancy of MoS2 surface[J]. Sci Rep 7, 1 (2017)

    ADS  Google Scholar 

  51. A.J. Yang, D.W. Wang, X.H. Wang, J.F. Chu, P.L. Lv, Y. Liu, Phosphorene: A promising candidate for highly sensitive and selective SF6 decomposition gas sensors[J]. IEEE Electron Device Lett. 38(7), 963–966 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Li, M. Ni-doped MoS2 biosensor: a promising candidate for early diagnosis of lung cancer by exhaled breathe analysis. Appl. Phys. A 124, 751 (2018). https://doi.org/10.1007/s00339-018-2185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2185-1

Navigation