Skip to main content
Log in

Investigations on structural and optical properties of chalcone dendrimer in Ag@TiO2 core–shell nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The main focus of this research article is to observe the contributions of chalcone dendrimer in Ag@TiO2 core shell nanoparticles. The samples were synthesized by Redox transmetalation method. The structure of the samples in three molar ratio viz.1:1, 1:2, 1:5 (noted as A,B,C) with Poly Vinyl Pyrrolidone (PVP) as stabilizing agent were compared with the sample Ag@TiO2 of 1:2 molar ratio (noted as D) using zeroth generation triazolyl chalcone dendrimer as stabilizing agent. The prepared samples were structurally characterized by XRD and HRTEM analysis. The XRD and SAED analysis exhibited tetragonal body centered crystal structure with dhkl = 1.6 Å, 2.4 Å and 3.4 Å. The lattice parameters were calculated for all the samples and the variations observed were reported. The grain size and dislocation density of the synthesized nanoparticles were calculated using Debye–Scherrer formula. From Williamson–Hall plot, it was identified that the lattice strain was increased in sample D in which chalcone dendrimer acted as stabilizing agent. The structural investigation showed the impact of stabilizing agent on the surface elements. Similarly, the optical characteristics were discussed based on UV-DRS and Photoluminescence studies. Using Kubelka–Munk function, the band gap energy was calculated and the difference observed in the band gap energy due to the impact of stabilizing agents on metal–metaloxide (Ag@TiO2) combination was analysed. The molar absorptivity (ε) was calculated for all the samples using Beer–Lambert’s law and the difference in absorbance on using different stabilizing agent was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Pradeep A Textbook of Nanoscience and Nanotechnology (McGraw Hill Edn. (India) Pvt. Ltd., Chennai, 2012) (ISBN 1-25-900732-4)

    Google Scholar 

  2. T. Pradeep, (2007) Nano: The Essentials (McGraw Hill Edn. (India) Pvt. Ltd., Chennai, 2007)

  3. R. Ghosl Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012). https://doi.org/10.1021/cr100449n

    Article  Google Scholar 

  4. R. Scott, A. Datye, R. Crooks, Bimetallic palladium—platinum dendrimer encapsulatedcatalysts. J. Am. Chem. Soc. 125, 3708–3709 (2003). https://doi.org/10.1021/ja034176n

    Article  Google Scholar 

  5. G.R. Newkome, C.N. Moorefield, F. Vogtle Dendrons and Dendrimers. Concepts, Synthesis and Applications. (Wiley-VCH, Hoboken, 2001). https://doi.org/10.1002/3527600612

    Book  Google Scholar 

  6. Y. Niu, L. Yeung, R. Crooks, Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles. J. Am. Chem. Soc. 123, 6840–6846 (2001). https://doi.org/10.1021/ja0105257

    Article  Google Scholar 

  7. H.-L. Jiang, Q. Xu, Recent progress in synergistic catalysis over heterometallic nanoparticles. J. Mater. Chem. 21, 13705 (2011). https://doi.org/10.1039/c1jm12020d

    Article  Google Scholar 

  8. X. Chen, S.S. Samuel, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007). https://doi.org/10.1021/cr0500535

    Article  Google Scholar 

  9. S. Vaidyaa, A. Patrab, A.K. Gangulia, CdS@TiO2 and ZnS@TiO2 core–shell nanocomposites: synthesis and optical properties. Colloids Surf. A Physicochem. Eng. Aspects. 363, 130–134 (2010). https://doi.org/10.1016/j.colsurfa.2010.04.030

    Article  Google Scholar 

  10. V. Chhabra, V. Pillai, B.K. Mishra, A. Morrone, D.O. Shah (1995) Synthesis, characterization, and properties of microemulsion-mediated nanophase Ti02 particles. Langmuir 11: 3307–3311. https://doi.org/10.1021/la00009a007

    Article  Google Scholar 

  11. D. Mangalaraj, D.N. Devi (2017) Ag/TiO2 (Metal/Metal Oxide) core shell nanoparticles for biological applications. in Springer Proceedings in Physics, 189. https://www.springer.com/in/book/9783319448893. Accessed 5 Apr 2018

  12. D. Zhang, X. Song, R. Zhang, M. Zhang, F. Liu (2005) Preparation and characterization of Ag@TiO2 core-shell nanoparticle water-in-oil emulsions. Eur. J. Inorg. Chem. 1643–1648. https://doi.org/10.1002/ejic.200400811

    Article  Google Scholar 

  13. W. Lee, M. Kim, J. Choi, J. Park, S.J. Ko, S.J. Oh, J. Cheon (2005) Redox—transmetalation process as a generalized synthetic strategy for core–shell magnetic nanoparticles. J. Am. Chem. Soc. 127, 16090–16097. https://doi.org/10.1021/ja053659j

    Article  Google Scholar 

  14. R.V. Vijayalakshmi, A. Kannan, P. Praveen Kumar, K. Ravichandran, P. Rajakumar, Effect of stabilizing agents on the conductivity of Co@TiO2core–shell nanoparticles. Nano-Structures&Nano-Objects 16, 258–265 (2018). https://www.sciencedirect.com/science/article/pii/S2352507X18301215. Accessed 2 Aug 2018

    Article  Google Scholar 

  15. R.V. Vijayalakshmi, A. Kannan, P.Praveen Kumar, K. Ravichandrand, P. Rajakumar, The role of glycodendrimer in the structural and optical studies of Co@AgCl core-shell nanoparticles. Mater. Chem. Phys. 221, 356–360 (2019). https://www.sciencedirect.com/science/article/pii/S0254058418307983?dgcid=rss_sd_all. Accessed 27 Sept 2018

    Article  Google Scholar 

  16. R.V. Vijayalakshmi, P. Praveen Kumar, S. Selvarani, R. Rajakumar, K. Ravichandran, Chalcone dendrimer stabilized core-shell nanoparticles – a comparative study on Co@TiO2, Ag@TiO2 and Co@AgCl nanoparticles for antibacterial and antifungal activity. Mater. Res. Express. 4, 105046 (2017). http://iopscience.iop.org/issue/2053-1591/4/10. Accessed 3 Jan 2018

    Article  ADS  Google Scholar 

  17. B.D. Cullity. Elements of X-ray Diffraction. (Addison-Wesley Pub. Comp Inc, California, 1956)

    Google Scholar 

  18. C. Hammond, (2001) The basics of crystallography and diffraction (Oxford University Press, Oxford, 2001)

  19. A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi (2011) X-ray analysis of ZnO nanoparticles by Williamson–Hall and size-strain plot methods. Solid State Sci. 13, 251–256. http://repository.um.edu.my/88950/1/solidstatescience2011.pdf. Accessed 12 Dec 2017

  20. G.K. Williamson, W.H. Hall, (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica. https://www.sciencedirect.com/science/article/pii/0001616053900066. Accessed 12 Dec 2017

  21. B. Manikandan, S.T. Endo, M.K.R. Kaneko, J. Rita, Properties of sol gel synthesized ZnO nanoparticles. J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-8981-8

    Article  Google Scholar 

  22. P. Bindu, Sabu Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theor Appl Phys 8, 123–134 (2014). https://doi.org/10.1007/s40094-014-0141-9

    Article  Google Scholar 

  23. A.C.J. Wilson, X-ray Optics (UK, London, 1949), https://archive.org/details/X-rayOptics/page/n0

  24. V. Kamlesh, K. Chandekar, K. Mohan, Size-strain analysis and elastic properties of CoFe 2 O 4 nanoplatelets by hydrothermal method. J.Mol.Struc. 1154, 418–427 (2018). https://www.researchgate.net/publication/320061875. Accessed 22 June 2018

  25. K. Ravichandran, D. Nedumaran, Synthesis and characterization of zinc sulphide nanoparticles using inert gas condensation technique. Int J Mech Eng Mater Sci 4(1), 25–31 (2011)

    Google Scholar 

  26. A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mexic. De Fisica S53, 18 (2007). https://rmf.smf.mx/pdf/rmf-s/53/5/53_5_18.pdf. Accessed 22 June 2018

  27. T. Silfvast William (2004) Laser fundamentals (Cambridge University Press, New Delhi, 2004) ISBN–0-521-83345-0

    Book  Google Scholar 

  28. B.P. Wang, X. Huang, X. Qin, Y. Zhang, D.J. Wei, W.M. Hwan, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. 47, 7931–7933 (2008). https://doi.org/10.1002/anie.200802483

    Article  Google Scholar 

  29. S. Glaus, G. Calzaferri, The band structures of the silver halides AgF, AgCl, and AgBr: a comparative study. Photochem. Photobiol. Sci. 2, 398–401 (2003). https://doi.org/10.1039/b211678b

    Article  Google Scholar 

  30. F. Moser, R.K. Ahrenkiel, S.L. Lyu (1967) Optical absorption and luminescent emission of the I-center in AgCl. Phys. Rev. 161(3):897–892. https://journals.aps.org/pr/issues/161/3. Accessed 18 Aug 2018

    Article  ADS  Google Scholar 

  31. M.I. Tunc, H. Bruns, M. Gliemann, Grunzea, P. Koelsch, Bandgap determination and charge separation in Ag@TiO2 core shell nanoparticle films. Surf. Interface Anal. 42, 835–841 (2010). https://doi.org/10.1002/sia.3558

    Article  Google Scholar 

  32. J.K. Michael Thomas, (1996) Ultraviolet and visible spectroscopy, (John Wiley and sons) ISBN 978-81-265-1723-7

  33. D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobleya, D.G. Fernig (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra Analyst, 139: 4855–4861. https://doi.org/10.1039/c4an00978a

    Article  ADS  Google Scholar 

  34. L.E. Garcia sole, Bass, D. Jaque, (2005) An introduction to the optical spectroscopy solids (John Wiley and sons) ISBN 0-470-868856

  35. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, A. Fujishima, Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat. Mater. 2, 29 (2003). https://www.nature.com/articles/nmat796

    Article  ADS  Google Scholar 

  36. X.Z. Li, F.B. Li (2001) Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol. 35, 2381. https://doi.org/10.1021/es001752w

    Article  ADS  Google Scholar 

  37. M.I. Litter (1999) Last advances on TiO2—photocatalytic removal of chromium, uranium and arsenic Appl. Catal. B. 2223, 89. https://www.researchgate.net/profile/Marta_Litter/publication/316521226

  38. L.Q. Jing, X.J. Sun, B.F. Xin, W.M. Cai, H.G. Fu, The preparation and characterization of La doped TiO2nanoparticles and their photocatalytic activity. J. Solid State Chem. 177, 3375 (2004). https://www.sciencedirect.com/science/article/pii/S0022459604003068. Accessed 18 Aug 2018

  39. B.F. Xin, L.Q. Jing, Z.Y. Ren, B.Q. Wang, H.G.Fu (2005) Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2, J.Phys.Chem.B 109 (2005)2805. https://doi.org/10.1021/jp0469618

    Article  Google Scholar 

  40. S. Bagheri, N.M. Julkapli, S. Bee Abd Hamid (2014) Titanium dioxide as a catalyst support in heterogeneous catalysis (Hindawi Publishing Corporation). Sci World J. https://doi.org/10.1155/2014/727496

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Dr.R.Anandhan, Dept. of Organic Chemistry, University of Madras, Chennai for his support to do the entire lab work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Praveen Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayalakshmi, R.V., Selvarani, S., Praveen Kumar, P. et al. Investigations on structural and optical properties of chalcone dendrimer in Ag@TiO2 core–shell nanoparticles. Appl. Phys. A 124, 759 (2018). https://doi.org/10.1007/s00339-018-2177-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2177-1

Navigation