Skip to main content
Log in

Structure, infra-red, dielectric properties and conduction mechanism of Ti and Cu–Ti co-doped bismuth ferrite (BiFeO3): a comparison study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Multiferroic compositions BiFe0.90Ti0.10O3 and BiFe0.885Cu0.015Ti0.1O3 were synthesized by solid-state mixed oxide method. XRD studies confirmed rhombohedral crystal structure for both compositions while a little change in lattice parameters was observed with Cu–Ti co-doping. SEM analysis indicate that with co-doping comparatively smaller grains were evolved in the microstructure. Fourier-transform infrared spectroscopy (FTIR) was conducted to study absorption bands of different phases. High temperature A.C. conductivity (σac) analysis revealed the hopping charge conduction mechanism. Impedance spectroscopy (IS) was employed from room temperature to 230 °C in 100 Hz–1 MHz frequency range to analyze dielectric properties. IS data indicated decline in impedance with increase in temperature and frequency which confirms negative temperature coefficient of resistance (NTCR) behavior. Owing to the resistance–temperature characteristics, these compositions are well suited for thermal sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Eerenstein, N. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature, 442, 759–765 (2006)

    ADS  Google Scholar 

  2. G. Catalan, J.F. Scott, “Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Google Scholar 

  3. C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005)

    ADS  Google Scholar 

  4. H. Béa, M. Bibes, S. Petit, J. Kreisel, A. Barthélémy, Structural distortion and magnetism of BiFeO3 epitaxial thin films: a Raman spectroscopy and neutron diffraction study. Philos. Mag. Lett. 87, 165–174 (2007)

    ADS  Google Scholar 

  5. Z. Gabbasova, M. Kuz’min, A. Zvezdin, I. Dubenko, V. Murashov, D. Rakov et al., Bi1– xRxFeO3 (R = rare earth): a family of novel magnetoelectrics. Phys. Lett. A 158, 491–498 (1991)

    ADS  Google Scholar 

  6. S.-T. Zhang, Y. Zhang, M.-H. Lu, C.-L. Du, Y.-F. Chen, Z.-G. Liu et al., Substitution-induced phase transition and enhanced multiferroic properties of Bi1– xLaxFeO3 ceramics. Appl. Phys. Lett. 88, 162901 (2006)

    ADS  Google Scholar 

  7. D. Wang, W. Goh, M. Ning, C. Ong, Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature. Appl. Phys. Lett. 88, 212907 (2006)

    ADS  Google Scholar 

  8. A.M. Kadomtseva, A.K. Zvezdin, Y.F. Popov, A.P. Pyatakov, G.P. Vorob’ev, Space-time parity violation and magnetoelectric interactions in antiferromagnets. Jetp Lett. 79, 571–581 (2004)

    ADS  Google Scholar 

  9. S. Fedulov, P. Ladyzhinskii, I. Pyatigorskaya, Y.N. Venevtsev, Complete phase diagram of the PbTiO3–BiFeO3 system. Soviet Phys. Solid State 6, 375–378 (1964)

    Google Scholar 

  10. M.M. Kumar, A. Srinivas, S. Suryanarayana, Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87, 855–862 (2000)

    ADS  Google Scholar 

  11. K.Y. Yun, M. Noda, M. Okuyama, Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition. Appl. Phys. Lett. 83, 3981–3983 (2003)

    ADS  Google Scholar 

  12. G. Dong, G. Tan, Y. Luo, W. Liu, H. Ren, A. Xia, Optimization of the multiferroic BiFeO3 thin films by divalent ion (Mn,Ni) co-doping at B-sites. Mater. Lett. 118, 31–33 (2014)

    Google Scholar 

  13. V. Palkar, J. John, R. Pinto, Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett. 80, 1628–1630 (2002)

    ADS  Google Scholar 

  14. X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005)

    ADS  Google Scholar 

  15. J.K. Kim, S.S. Kim, W.-J. Kim, A.S. Bhalla, R. Guo, Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl. Phys. Lett. 88, 132901 (2006)

    ADS  Google Scholar 

  16. S. Yasui, H. Uchida, H. Nakaki, K. Nishida, H. Funakubo, S. Koda, Analysis for crystal structure of Bi(Fe,Sc)O3 thin films and their electrical properties. Appl. Phys. Lett. 91, 022906 (2007)

    ADS  Google Scholar 

  17. M. Azuma, H. Kanda, A.A. Belik, Y. Shimakawa, M. Takano, Magnetic and structural properties of BiFe1–xMnxO3. J. Magn. Magn. Mater. 310, 1177–1179 (2007)

    ADS  Google Scholar 

  18. I. Coondoo, N. Panwar, M.A. Rafiq, V.S. Puli, M.N. Rafiq, R.S. Katiyar, “Structural, dielectric and impedance spectroscopy studies in (Bi0.90R0.10) Fe0.95Sc0.05O3 [R = La,Nd] ceramics”. Ceram. Int. 40, 9895–9902 (2014)

    Google Scholar 

  19. V. Singh, S. Sharma, M. Kumar, R. Kotnala, R. Dwivedi, Structural transition, magnetic and optical properties of Pr and Ti co-doped BiFeO3 ceramics. J. Magn. Magn. Mater. 349, 264–267 (2014)

    ADS  Google Scholar 

  20. C.-S. Chou, C.-L. Liu, C.-M. Hsiung, R.-Y. Yang, Preparation and characterization of the lead-free piezoelectric ceramic of Bi0.5Na0.5TiO3 doped with CuO. Powder Technol. 210, 212–219 (2011)

    Google Scholar 

  21. A. Kamal, M.A. Rafiq, M.N. Rafiq, M. Usman, M. Waqar, M.S. Anwar, Structural and impedance spectroscopic studies of CuO-doped (K0. 5Na0. 5Nb0. 995Mn0. 005O3) lead-free piezoelectric ceramics. Appl. Phys. A 122, 1037 (2016)

    ADS  Google Scholar 

  22. Y.-H. Lin, Q. Jiang, Y. Wang, C.-W. Nan, L. Chen, J. Yu, Enhancement of ferromagnetic properties in BiFeO3 polycrystalline ceramic by La doping. Appl. Phys. Lett. 90, 172507 (2007)

    ADS  Google Scholar 

  23. V. Naik, R. Mahendiran, Magnetic and magnetoelectric studies in pure and cation doped. Solid State Commun. 149, 754–758 (2009)

    ADS  Google Scholar 

  24. I. Coondoo, N. Panwar, I. Bdikin, V. Puli, R. Katiyar, A. Kholkin, Structural, morphological and piezoresponse studies of Pr and Sc co-substituted BiFeO3 ceramics. J. Phys. D: Appl. Phys. 45, 055302 (2012)

    ADS  Google Scholar 

  25. R.T. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751–767 (1976)

    ADS  Google Scholar 

  26. X. Wang, Y. Lin, X. Ding, J. Jiang, Enhanced visible-light-response photocatalytic activity of bismuth ferrite nanoparticles. J. Alloy. Compd. 509, 6585–6588 (2011)

    Google Scholar 

  27. K. Parida, R. Choudhary, Structural, electrical, optical and magneto-electric characteristics of chemically synthesized CaCu3Ti4O12 dielectric ceramics. Mater. Res. Express 4, 076302 (2017)

    ADS  Google Scholar 

  28. T. Cottrell, The Strengths of Chemical Bonds, 2nd edn, Butterwoth, London, 1958 Search PubMed;(b) B. deB. Darwent, National Standard Reference Data Series, National Bureau of Standards, no. 31, Washington, 1970 Search PubMed;(c) SW Benson, J. Chem. Educ. 42, 502 (1965)

    Google Scholar 

  29. J. Kerr, Bond dissociation energies by kinetic methods. Chem. Rev. 66, 465–500 (1966)

    Google Scholar 

  30. S. Farhadi, M. Zaidi, Bismuth ferrite (BiFeO3) nanopowder prepared by sucrose-assisted combustion method: a novel and reusable heterogeneous catalyst for acetylation of amines, alcohols and phenols under solvent-free conditions. J. Mol. Catal. A: Chem. 299, 18–25 (2009)

    Google Scholar 

  31. M.A. Rafiq, M. Waqar, T.A. Mirza, A. Farooq, A. Zulfiqar, Effect of Ni2+ substitution on the structural, magnetic, and dielectric properties of barium hexagonal ferrites (BaFe12O19). J. Electron. Mater. 46, 241–246 (2017)

    ADS  Google Scholar 

  32. S. Agrawal, A. Jawad, S. Ashraf, A. Naqvi, Structural, optical, dielectric and magnetic properties of Cu doped BiFeO3 nanoparticles synthesized by sol gel method. Mater. Focus 3, 60–66 (2014)

    Google Scholar 

  33. T. Carvalho, P. Tavares, Synthesis and thermodynamic stability of multiferroic BiFeO3. Mater. Lett. 62, 3984–3986 (2008)

    Google Scholar 

  34. Y. Hu, L. Fei, Y. Zhang, J. Yuan, Y. Wang, H. Gu, Synthesis of bismuth ferrite nanoparticles via a wet chemical route at low temperature. J. Nanomater. 2011, 27 (2011)

    Google Scholar 

  35. A.K. Jonscher, The ‘universal’dielectric response. nature, 267, 673–679, (1977)

    ADS  Google Scholar 

  36. M.A. Rafiq, M.E. Costa, A. Tkach, P.M. Vilarinho, Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: a comparison study. Cryst. Growth Des. 15, 1289–1294 (2015)

    Google Scholar 

  37. M.A. Rafiq, M. Waqar, Q.K. Muhammad, M. Waleed, M. Saleem, M.S. Anwar, Conduction mechanism and magnetic behavior of Cu doped barium hexaferrite ceramics. J. Mater. Sci.: Mater. Electron. 29, 5134–5142 (2018)

    Google Scholar 

  38. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1∕ 2Nb1∕ 2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys. 97, 084107 (2005)

    ADS  Google Scholar 

  39. A. Peláiz-Barranco, J. Guerra, R. Lopez-Noda, E. Araujo, Ionized oxygen vacancy-related electrical conductivity in (Pb1–xLax)(Zr0. 90Ti0. 10)1–x/4 O3 ceramics. J. Phys. D: Appl. Phys. 41, 215503 (2008)

    ADS  Google Scholar 

  40. Q.K. Muhammad, M. Waqar, M.A. Rafiq, M.N. Rafiq, M. Usman, M.S. Anwar, Structural, dielectric, and impedance study of ZnO-doped barium zirconium titanate (BZT) ceramics. J. Mater. Sci. 51, 10048–10058 (2016)

    ADS  Google Scholar 

  41. J.R. Macdonald, E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications. History. 1, 1–13 (2005)

    Google Scholar 

  42. M.A. Rafiq, M.T. Khan, Q.K. Muhammad, M. Waqar, F. Ahmed, Impedance analysis and conduction mechanism of Ba doped Mn1. 75Ni0. 7Co0. 5– xCu0. 05O4 NTC thermistors. Appl. Phys. A 123, 589 (2017)

    ADS  Google Scholar 

  43. M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium-calcium-zirconium-titanium oxide ceramics. Ceram. Int. 41, 11436–11444 (2015)

    Google Scholar 

  44. H. Singh, A. Kumar, K. Yadav, Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3–BaTiO3 ceramics. Mater. Sci. Eng. B 176, 540–547 (2011)

    Google Scholar 

  45. R. Choudhary, D.K. Pradhan, C. Tirado, G. Bonilla, R. Katiyar, Impedance characteristics of Pb(Fe2/3W1/3)O3–BiFeO3 composites. Phys. Status Solidi (b) 244, 2254–2266 (2007)

    ADS  Google Scholar 

  46. M.A. Rafiq, M. Rasheed, Q.K. Muhammad, M. Waqar, M. Zubair, Structural and high temperature conduction studies of (Na0.46Bi0.46Ba0.08)(MnxTi1– xO3)–CuO lead-free piezoelectric ceramics. J. Mater. Sci.: Mater. Electron. 28, 15009–15020 (2017)

    Google Scholar 

  47. A. Srivastava, A. Garg, F.D. Morrison, Impedance spectroscopy studies on polycrystalline BiFeO3 thin films on Pt/Si substrates. J. Appl. Phys. 105, 054103 (2009)

    ADS  Google Scholar 

  48. K. Parida, S.K. Dehury, R. Choudhary, Electrical, optical and magneto-electric characteristics of BiBaFeCeO6 electronic system. Mater. Sci. Eng. B 225, 173–181 (2017)

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Department of Physics and Department of Polymer and Process Engineering, UET Lahore for extending the infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Rafiq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiq, M.A., Muhammad, Q.K., Nasir, S. et al. Structure, infra-red, dielectric properties and conduction mechanism of Ti and Cu–Ti co-doped bismuth ferrite (BiFeO3): a comparison study. Appl. Phys. A 124, 748 (2018). https://doi.org/10.1007/s00339-018-2170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2170-8

Navigation