Electrochemical sensor for detection of mercury (II) ions in water using nanostructured bismuth hexagons


This study presents a systematic observation of the ability of bismuth nanostructures to detect trace amounts of mercury. Nanostructured hexagons of bismuth were synthesized using electrochemical deposition with potentiostatic mode on indium tin oxide-coated glass electrodes. Regular hexagons composed of nano-sized hexagonal building blocks (edge length \(\approx 80\) to 700 nm) with well-defined edges were observed in scanning electron microscopy studies. X-ray diffraction pattern indicates the presence of polycrystalline bismuth and bismuth oxide in rhombohedral and cubic phases, respectively. X-ray photoelectron spectroscopy was done to analyze the chemical structure of the prepared nanostructures. Square wave anodic stripping voltammetry technique confirms that these nanostructured electrodes are highly sensitive to \(Hg^{2+}\) ions down to concentrations as low as 0.74 ppb.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Y. Lu et al., A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 178, 324–338 (2018)

    Article  Google Scholar 

  2. 2.

    B. Zhang, Facile and green fabrication of size-controlled AuNPs/CNFs hybrids for the highly sensitive simultaneous detection of heavy metal ions. Electrochim. Acta 196, 422–430 (2016)

    Article  Google Scholar 

  3. 3.

    L. Cui, J. Wu, H. Ju, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 63, 276–286 (2015)

    Article  Google Scholar 

  4. 4.

    K.Z. Brainina, N.Y. Stozhko, Z.V. Shalygina, Surface microreliefs and voltage-current characteristics of gold electrodes and modified thick-film graphite-containing electrodes. J. Anal. Chem. 59, 753–759 (2004)

    Article  Google Scholar 

  5. 5.

    F. Okçu, F.N. ERTAŞ, Hİ. Gökçel, H. Tural, L anodic stripping voltammetric behavior of mercury in chloride medium and its determination at a gold film electrode. Turk. J. Chem. 29, 355–366 (2005)

    Google Scholar 

  6. 6.

    B. Kaur, R. Srivastava, B. Satpati, Ultratrace detection of toxic heavy metal ions found in water bodies using hydroxyapatite supported nanocrystalline ZSM-5 modified electrodes. New J. Chem. 39, 5137–5149 (2015)

    Article  Google Scholar 

  7. 7.

    S. Deshmukh, Terephthalic acid capped iron oxide nanoparticles for sensitive electrochemical detection of heavy metal ions in water. J. Electroanal. Chem. 788, 91–98 (2017)

    Article  Google Scholar 

  8. 8.

    S.-F. Zhou, Individual and simultaneous electrochemical detection toward heavy metal ions based on l-cysteine modified mesoporous MnFe\(_{2}\)O\(_{4}\) nanocrystal clusters. J. Alloys Compd. 721, 492–500 (2017)

    Article  Google Scholar 

  9. 9.

    W.-Y. Zhou, Surface-electronic-state-modulated, single-crystalline (001) TiO\(_{2}\) nanosheets for sensitive electrochemical sensing of heavy-metal ions. Anal. Chem. 89, 3386–3394 (2017)

    Article  Google Scholar 

  10. 10.

    W. Yantasee, Y. Lin, T.S. Zemanian, G.E. Fryxell, Voltammetric detection of lead (ii) and mercury (ii) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (samms). Analyst 128, 467–472 (2003)

    ADS  Article  Google Scholar 

  11. 11.

    N. Zhou, H. Chen, J. Li, L. Chen, Highly sensitive and selective voltammetric detection of mercury (ii) using an ito electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles. Microchim. Acta 180, 493–499 (2013)

    Article  Google Scholar 

  12. 12.

    A. Economou, Bismuth-film electrodes: recent developments and potentialities for electroanalysis. TrAC Trends Anal. Chem. 24, 334–340 (2005)

    Article  Google Scholar 

  13. 13.

    X. Zhang, On-site determination of Pb\(^{2+}\) and Cd\(^{2+}\) in seawater by double stripping voltammetry with bismuth-modified working electrodes. Microchem. J. 126, 280–286 (2016)

    Article  Google Scholar 

  14. 14.

    K.C. Armstrong, C.E. Tatum, R.N. Dansby-Sparks, J.Q. Chambers, Z.-L. Xue, Individual and simultaneous determination of lead, cadmium, and zinc by anodic stripping voltammetry at a bismuth bulk electrode. Talanta 82, 675–680 (2010)

    Article  Google Scholar 

  15. 15.

    J. Wang, Stripping analysis at bismuth electrodes: a review. Electroanalysis 17, 1341–1346 (2005)

    Article  Google Scholar 

  16. 16.

    H. Kim, Structure and optical properties of Bi\(_{2}\)S\(_{3}\) and Bi\(_{2}\)O\(_{3}\) nanostructures synthesized via thermal evaporation and thermal oxidation routes. Chem. Eng. J. 215, 151–156 (2013)

    Article  Google Scholar 

  17. 17.

    X. Wang, Y. Zhang, Z. Wu, Magnetic and optical properties of multiferroic bismuth ferrite nanoparticles by tartaric acid-assisted sol–gel strategy. Mater. Lett. 64, 486–488 (2010)

    Article  Google Scholar 

  18. 18.

    J. Yu, Flowerlike C-doped BiOCl nanostructures: facile wet chemical fabrication and enhanced UV photocatalytic properties. Appl. Surf. Sci. 284, 497–502 (2013)

    ADS  Article  Google Scholar 

  19. 19.

    M.A. Tumelero, Electrodeposition and ab initio studies of metastable orthorhombic Bi\(_{2}\)Se\(_{3}\): a novel semiconductor with bandgap for photovoltaic applications. J. Phys. Chem. C 120, 11797–11806 (2016)

    Article  Google Scholar 

  20. 20.

    P.B. Souza, M.A. Tumelero, G. Zangari, A.A. Pasa, Tuning electrodeposition conditions towards the formation of smooth Bi\(_{2}\)Se\(_{3}\) thin films. J. Electrochem. Soc. 164, D401–D405 (2017)

    Article  Google Scholar 

  21. 21.

    B. Illy, B. Shollock, J. MacManus-Driscoll, M. Ryan, Electrochemical growth of ZnO nanoplates. Nanotechnology 16, 320 (2005)

    ADS  Article  Google Scholar 

  22. 22.

    G. March, T.D. Nguyen, B. Piro, Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5, 241–275 (2015)

    Article  Google Scholar 

  23. 23.

    O.A. Farghaly, M. Ghandour, Square-wave stripping voltammetry for direct determination of eight heavy metals in soil and indoor-airborne particulate matter. Environ. Res. 97, 229–235 (2005)

    Article  Google Scholar 

  24. 24.

    H.M. Soliman, A.-H.B. Kashyout, Electrochemical deposition and optimization of thermoelectric nanostructured bismuth telluride thick films. Engineering 3, 659 (2011)

    Article  Google Scholar 

  25. 25.

    Benning, L. G. & Waychunas, G. A. Nucleation, growth, and aggregation of mineral phases: mechanisms and kinetic controls. Kinetics of Water–Rock Interaction (Springer, New York, 2008), pp. 259–333

  26. 26.

    L. Guo, G. Oskam, A. Radisic, P.M. Hoffmann, P.C. Searson, Island growth in electrodeposition. J. Phys. D Appl. Phys. 44, 443001 (2011)

    ADS  Article  Google Scholar 

  27. 27.

    H.-Y. Jiang, In situ construction of \(\alpha\)-Bi\(_{2}\)O\(_{3}\)/G-C\(_{3}\)N\(_{4}\)/\(\beta\)-Bi\(_{2}\)O\(_{3}\) composites and their highly efficient photocatalytic performances. RSC Adv. 5, 92963–92969 (2015)

    Article  Google Scholar 

  28. 28.

    G. Aragay, A. Merkoçi, Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta 84, 49–61 (2012)

    Article  Google Scholar 

  29. 29.

    A. Merkoçi, Electrochemical biosensing with nanoparticles. FEBS J. 274, 310–316 (2007)

    Article  Google Scholar 

Download references


We thank DST, New Delhi (IFA-11/PH-06, IFA-13/PH-84), SERB, New Delhi (ECR/2016/1780, ECR/2016/1888), and UGC DAE CSR, Indore (CSR-IC/CRS-73/2014-15/581), for providing financial support. We are also thankful to MRC, MNIT Jaipur, for providing characterization facilities.

Author information



Corresponding authors

Correspondence to Sandeep Gupta or Manoj Kumar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Singh, R., Anoop, M.D. et al. Electrochemical sensor for detection of mercury (II) ions in water using nanostructured bismuth hexagons. Appl. Phys. A 124, 737 (2018). https://doi.org/10.1007/s00339-018-2161-9

Download citation