Skip to main content
Log in

Load drop and hardness drop during nanoindentation on single-crystal copper investigated by molecular dynamics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Here, we present nanoindentation on single-crystal copper via large-scale molecular dynamics (MD) simulation to provide clarification on load drop and the correlated hardness drop during plastic deformation of a workpiece placed beneath an indenter. According to the clear criterion of contact between the atoms in the workpiece and in the indenter, the contact area between the indenter and workpiece is calculated, and the general hardness and the spatiotemporal distribution of the dislocations around the indenter are also obtained. In the elastic stage, MD simulation results are in good agreement with the Hertzian solution. During the indentation, dislocations are dominated by the glissile Shockley partial dislocations (SPDs), while the proportion of other sessile dislocations is low and grows sluggishly. The density of the dislocations that aggregated around the indenter remained at approximately \(10^{17}\,\text {m}^{-2}\) during the indentation process. Dislocations adhered to the indenter concentrate in the volume of the hemisphere whose radius is three times of the radius of plastic zone. Load drop takes place after hardness drop which marks the abrupt and massive growth of the glissile SPDs. The more and more dense state of atoms around the indenter caused by dislocation behaviors result in the increase of hardness, while the avalanche of glissile SPDs leads to the following drop, which occurs repeatedly and causes a sawtooth pattern of the load-depth and hardness-depth curves over the entire indentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.Y. Lim, M.M. Chaudhri, Philos. Mag. A. 79(12), 2979 (1999)

    ADS  Google Scholar 

  2. W. Lee, Y. Chen, Int. J. Plast. 26(10), 1527 (2010)

    Google Scholar 

  3. T. Fu, X. Peng, Y. Zhao, C. Feng, C. Huang, Q. Li, Z. Wang, Appl. Phys. A 122(2), 67 (2016)

    ADS  Google Scholar 

  4. T. Fu, X. Peng, X. Chen, S. Weng, N. Hu, Q. Li, Z. Wang, Sci. Rep. 6(1), 35665 (2016)

    ADS  Google Scholar 

  5. Y. Chiu, A. Ngan, Acta Mater. 50(10), 2677 (2002)

    Google Scholar 

  6. N. Zaafarani, D. Raabe, F. Roters, S. Zaefferer, Acta Mater. 56(1), 31 (2008)

    Google Scholar 

  7. E. Demir, D. Raabe, N. Zaafarani, S. Zaefferer, Acta Mater. 57(2), 559 (2009)

    Google Scholar 

  8. E. Lilleodden, J. Zimmerman, S. Foiles, W. Nix, J. Mech. Phys. Solids. 51(5), 901 (2003)

    ADS  Google Scholar 

  9. J. Lian, J. Wang, Y.Y. Kim, J. Greer, J. Mech. Phys. Solids. 57(5), 812 (2009)

    ADS  Google Scholar 

  10. Y. Lee, J.Y. Park, S.Y. Kim, S. Jun, S. Im, Mech. Mater. 37(10), 1035 (2005)

    Google Scholar 

  11. D. Mordehai, M. Kazakevich, D.J. Srolovitz, E. Rabkin, Acta Mater. 59(6), 2309 (2011)

    Google Scholar 

  12. T. Remington, C. Ruestes, E. Bringa, B. Remington, C. Lu, B. Kad, M. Meyers, Acta Mater. 78, 378 (2014)

    Google Scholar 

  13. R. Kositski, D. Mordehai, Acta Mater. 90, 370 (2015)

    Google Scholar 

  14. R. Kositski, O. Kovalenko, S.W. Lee, J.R. Greer, E. Rabkin, D. Mordehai, Sci. Rep. 6, 25966 (2016)

    ADS  Google Scholar 

  15. W.D. Nix, H. Gao, J. Mech. Phys. Solids. 46(3), 411 (1998)

    ADS  Google Scholar 

  16. M.F. Ashby, Philos. Mag. 21(170), 399 (1970)

    ADS  Google Scholar 

  17. C. Ruestes, A. Stukowski, Y. Tang, D. Tramontina, P. Erhart, B. Remington, H. Urbassek, M. Meyers, E. Bringa, Mater. Sci. Eng. A 613, 390 (2014)

    Google Scholar 

  18. A. Stukowski, K. Albe, Model. Simul. Mater. Sci. Eng. 18(8), 085001 (2010)

    ADS  Google Scholar 

  19. Y. Gao, C.J. Ruestes, D.R. Tramontina, H.M. Urbassek, J. Mech. Phys. Solids 75, 58 (2015)

    ADS  Google Scholar 

  20. G.Z. Voyiadjis, M. Yaghoobi, Mater. Sci. Eng. A 634, 20 (2015)

    Google Scholar 

  21. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63(22), 224106 (2001)

    ADS  Google Scholar 

  22. K. Maekawa, A. Itoh, Wear 188(1), 115 (1995)

    Google Scholar 

  23. S. Plimpton, J. Comput. Phys. 117(1), 1 (1995)

    ADS  Google Scholar 

  24. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)

    ADS  Google Scholar 

  25. M. Talaei, N. Nouri, S. Ziaei-Rad, Mech. Mater. 102, 97 (2016)

    Google Scholar 

  26. G. Ziegenhain, H.M. Urbassek, A. Hartmaier, J. Appl. Phys. 107(6), 061807 (2010)

    ADS  Google Scholar 

  27. D. Saraev, R.E. Miller, Model. Simul. Mater. Sci. Eng. 13(7), 1089 (2005)

    ADS  Google Scholar 

  28. D. Saraev, R.E. Miller, Acta Mater. 54(1), 33 (2006)

    Google Scholar 

  29. J. Hua, A. Hartmaier, Model. Simul. Mater. Sci. Eng. 18(4), 045007 (2010)

    ADS  Google Scholar 

  30. U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton, Science 248(4954), 454 (1990)

    ADS  Google Scholar 

  31. K.L. Johnson, Contact Mechanics (Cambridge University Press, New York, 1985)

    MATH  Google Scholar 

  32. J. Alcalá, R. Dalmau, O. Franke, M. Biener, J. Biener, A. Hodge, Phys. Rev. Lett. 109(7), 075502 (2012)

    ADS  Google Scholar 

  33. T. Tsuru, Y. Shibutani, Phys. Rev. B 75, 035415 (2007)

    ADS  Google Scholar 

  34. H. Liang, C. Woo, H. Huang, A. Ngan, T. Yu, Comput. Model. Eng. Sci. 6(1), 105 (2004)

    Google Scholar 

  35. S. Goel, A. Kovalchenko, A. Stukowski, G. Cross, Acta Mater. 105, 464 (2016)

    Google Scholar 

  36. Q. Liu, L. Deng, X. Wang, Mater. Sci. Eng. A 676, 182 (2016)

    Google Scholar 

  37. R.M.J. Cotterill, Phys. Lett. A 60(1), 61 (1977)

    ADS  Google Scholar 

  38. W.M. Mook, C. Niederberger, M. Bechelany, L. Philippe, J. Michler, Nanotechnology 21(5), 055701 (2010)

    ADS  Google Scholar 

  39. J.P. Hirth, J. Lothe, Thoery of Dislocation (Wiley, New York, 1982)

    Google Scholar 

  40. K. Durst, B. Backes, M. Gken, Scr. Mater. 52(11), 1093 (2005)

    Google Scholar 

  41. J. Swadener, E. George, G. Pharr, J. Mech. Phys. Solids 50(4), 681 (2002)

    ADS  Google Scholar 

  42. D. Wu, T. Nieh, Mater. Sci. Eng. A 609, 110 (2014)

    Google Scholar 

  43. Y. Kamimura, K. Edagawa, S. Takeuchi, Acta Mater. 61(1), 294 (2013)

    Google Scholar 

  44. S. Chandra, M. Samal, V. Chavan, S. Raghunathan, Int. J. Plast. 101, 188 (2018)

    Google Scholar 

  45. F.C. Nix, D. MacNair, Phys. Rev. 60(8), 597 (1941)

    ADS  Google Scholar 

Download references

Acknowledgements

L. Deng, Q.T. Liu, X.Y. Wang, and J.J. Li acknowledge the financial support from National Science Foundation for Distinguished Young Scholars of China through Grant No. 51725504 and National Natural Science Foundation of China through Grant Nos. 51675200 and 51435007. Numerical simulations presented here were carried out using the high-performance computing experimental testbed at the National Supercomputing Centre in Shenzhen (Shenzhen Cloud Computing Centre) (see http://www.nsccsz.gov.cn/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Liu, Q., Wang, X. et al. Load drop and hardness drop during nanoindentation on single-crystal copper investigated by molecular dynamics. Appl. Phys. A 124, 743 (2018). https://doi.org/10.1007/s00339-018-2146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2146-8

Navigation