Skip to main content
Log in

Nitrogen-doped thermally reduced graphene oxide quantum dots–MnO composite toward enhanced-performance Li-ion battery

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Currently, seeking the impressive electrode material with superior performance used in lithium-ion batteries (LIB) is an emerging field of exploration. Aiming at the bad cyclic stability and poor rate performance of MnO anode materials in LIB, a simple and effective strategy adopted by preparing hybrid material composed of MnO nanostructures. In this paper, we report that the nitrogen-doped (N-doped) thermally reduced graphene oxide quantum dots (rGO QDs)–MnO composites synthesized by simple electrospinning method and toward enhanced-performance Li-ion battery. After a series of characterization and test, the rGO QDs–MnO electrode material still shows a high stable capacity of ca.760 mAh g−1 after 300 cycles with a current density of 0.1A g−1; it has a great improvement compared with pure MnO. Moreover, the rGO QDs–MnO composites have exhibited excellent rate capability. In fact, the introduction of N-doped rGO QDs not only improves the structure mechanical property but also facilitates the carrier transport in the MnO nanowires, acting as an effective sensitizer to enhance the reaction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.V. Reddy, G.V. Subba, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li Ion batteries. Chem. Rev. 113, 5364–5457 (2013)

    Article  Google Scholar 

  2. N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994–10024 (2012)

    Article  Google Scholar 

  3. J.B. Goodenough, K.S. Park, The li-ion rechargeable battery: a Perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)

    Article  Google Scholar 

  4. Y. Xia, Z. Xiao, X. Dou, H. Huang, X. Lu, R. Yan, Y. Gan, W. Zhu, J. Tu, W. Zhang, X. Tao, Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for Lithium-Ion batteries. ACS Nano. 7, 7083–7092 (2013)

    Article  Google Scholar 

  5. H. Jiang, Y. Hu, S. Guo, C. Yan, P.S. Lee, C. Li, Rational design of MnO/Carbon nanopeapods with internal void spacefor high-rate and long-life li-ion batteries. ACS Nano. 8, 6038–6046 (2014)

    Article  Google Scholar 

  6. S. Guo, G. Lu, S. Qiu, J. Liu, X. Wang, C. He, H. Wei, X. Yan, Z. Guo, Carbon-coated MnO microparticulate porous nanocomposites serving as anode materials with enhanced electrochemical performances. Nano Energy. 9, 41–49 (2014)

    Article  Google Scholar 

  7. H. Wang, Z. Xu, Z. Li, K. Cui, J. Ding, A. Kohandehghan, X. Tan, B. Zahiri, B.C. Olsen, C.M.B. Holt, D. Mitlin, Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett. 14, 1987–1994 (2014)

    Article  ADS  Google Scholar 

  8. Y. Sun, X. Hu, W. Luo, F. Xia, Y. Huang, Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for Lithium Ion batteries. Adv. Funct. Mater. 23, 2436–2444 (2013)

    Article  Google Scholar 

  9. B. Sun, Z. Chen, H.S. Kim, H. Ahn, G. Wang, MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries. J. Power Sources. 196, 3346–3349 (2011)

    Article  ADS  Google Scholar 

  10. W.M. Chen, L. Qie, Y. Shen, Y.M. Sun, L.X. Yuan, X.L. Hu, W.X. Zhang, Y.H. Huang, Superior lithium storage performance in nanoscaled MnO promoted by N-doped carbon webs. Nano Energy. 2, 412–418 (2013)

    Article  Google Scholar 

  11. Y.L. Ding, C.Y. Wu, H.M. Yu, J. Xie, G.S. Cao, T.J. Zhu, X.B. Zhao, Y.W. Zeng, Coaxial MnO/C nanotubes as anodes for lithium-ion batteries. Electrochimi. Acta. 56, 5844–5848 (2011)

    Article  Google Scholar 

  12. Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 5, 8869–8890 (2012)

    Article  Google Scholar 

  13. Z. Luo, G. Qi, K. Chen, M. Zou, L. Yuwen, X. Zhang, W. Huang, L. Wang, Microwave-assisted preparation of white fluorescent graphene quantum dots as a novel phosphor for enhanced white-light-emitting diodes. Adv. Funct. Mater. 26, 2739–2744 (2016)

    Article  Google Scholar 

  14. D.I. Son, B.W. Kwon, D.H. Park, W.S. Seo, Y. Yi, B. Angadi, C.L. Lee, W.K. Choi, Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7, 465–471 (2012)

    Article  ADS  Google Scholar 

  15. H.B. Yang, Y.Q. Dong, X. Wang, S.Y. Khoo, B. Liu, Cesium carbonate functionalized graphene quantum dots as stable electron-selective layer for improvement of inverted polymer solar cells. ACS Appl. Mater. Interfaces. 6, 1092–1099 (2014)

    Article  Google Scholar 

  16. P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, J. Jie, Crystalline Si/graphene quantum dots heterojunction solar cells. J. Phys. Chem. C 118, 5164–5171 (2014)

    Article  Google Scholar 

  17. H. Kalita, J. Mohapatra, L. Pradhan, A. Mitra, D. Bahadurc, M. Aslam, Efficient synthesis of rice based graphene quantum dots and their fluorescent properties. RSC. Adv. 6, 23518–23524 (2016)

    Article  Google Scholar 

  18. D. Pan, C. Xi, Z. Li, L. Wang, Z. Chen, B. Luc, M. Wu, Electrophoretic fabrication of highly robust, efficient, and benign heterojunction photoelectrocatalysts based on graphene-quantum-dot sensitized TiO2 nanotube arrays. J. Mater. Chem. A. 1, 3551–3555 (2013)

    Article  Google Scholar 

  19. D. Chao, C. Zhu, X. Xia, J. Liu, X. Zhang, J. Wang, P. Liang, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na Ion batteries. Nano Lett. 15, 565–573 (2015)

    Article  ADS  Google Scholar 

  20. L. Kong, Y. Yang, R. Li, Z. Li, Phenylalanine-functionalized graphene quantum dot-silicon nanoparticle composite as an anode material for lithium ion batteries with largely enhanced electrochemical performance. Electrochimi. Acta. 198, 144–155 (2016)

    Article  Google Scholar 

  21. S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sunb, B. Yang, Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 47, 6858–6860 (2011)

    Article  Google Scholar 

  22. A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)

    Article  ADS  Google Scholar 

  23. E. Kang, Y.S. Jun, G.H. Kim, J. Chun, U. Wiesner, A.C. Dillon, J.K. Kim, J. Lee, Highly improved rate capability for a Lithium-Ion battery nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method. Adv. Funct. Mater. 21, 4349–4357 (2011)

    Article  Google Scholar 

  24. Q. Sun, Z. Wang, Z. Zhang, Q. Yu, Y. Qu, J. Zhang, Y. Yu, B. Xiang, Rational design of graphene-reinforced MnO nanowires with enhanced electrochemical performance for li-ion batteries. ACS Appl. Mater. Interfaces. 8, 6303–6308 (2016)

    Article  Google Scholar 

  25. J. Xu, J. Mahmood, Y. Dou, S. Dou, F. Li, L. Dai, J.B. Baek, 2D frameworks of C2N and C3N as New anode materials for Lithium-Ion batteries. Adv. Mater. 29, 1702007 (2017)

    Article  Google Scholar 

  26. J. Mahmooda, E.K. Lee, M. Jungc, D. Shind, H.J. Choia, J.M. Seoa, S.M. Junga, D. Kimd, F. Lia, M.S. Lahd, N. Parkd, H.J. Shinc, J.H. Ohb, J.B. Baek, Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state. PNAS. 113, 7414–7419 (2016)

    Article  Google Scholar 

  27. J. Li, Q. Sun, Z. Wang, J. Xiang, B. Zhao, Y. Qu, B. Xiang, NbSe3 nanobelts wrapped by reduced graphene oxide for lithium ion battery with enhanced electrochemical performance. Appl. Surf. Sci. 412, 113–120 (2017)

    Article  ADS  Google Scholar 

  28. P. Wang, J. Wang, X. Wang, H. Yu, J. Yu, M. Lei, Y. Wang, One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Appl. Catal. B 132–133, 452–459 (2013)

    Article  Google Scholar 

  29. L. Zhang, L. Sun, Y. Huang, Y. Sun, T. Hu, K. Xu, F. Ma, Hydrothermal synthesis of N-doped RGO/MoSe2 composites and enhanced electro-catalytic hydrogen evolution. J. Mater. Sci. 52(23), 13561–13571 (2017)

    Article  Google Scholar 

  30. Y. Ji, J. Hu, J. Biskupek, U. Kaiser, Y.F. Song, C. Streb, Polyoxometalate-based bottom-up fabrication of graphene quantum dot/manganese vanadate composites as Lithium Ion battery anodes. Chem. Eur. J. 23, 16637–16643 (2017)

    Article  Google Scholar 

  31. L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling, D. Long, Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for li-ion intercalation pseudocapacitor. ACS Nano. 9, 11200–11208 (2015)

    Article  Google Scholar 

  32. F. Liu, X. Cheng, R. Xu, Y. Wu, Y. Jiang, Y. Yu, Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage. Adv. Funct. Mater. 28, 1800394 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the joint fund of the National Natural Science Foundation Committee of China Academy of Engineering Physics (NSAF) (U1630108). We also thank the USTC Center for Micro and Nanoscale Research and Fabrication for the contribution to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1247 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Li, J., Liu, P. et al. Nitrogen-doped thermally reduced graphene oxide quantum dots–MnO composite toward enhanced-performance Li-ion battery. Appl. Phys. A 124, 722 (2018). https://doi.org/10.1007/s00339-018-2143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2143-y

Navigation