Skip to main content
Log in

Study of surface plasmon resonance sensors based on silver–gold nanostructure alloy film coated tapered optical fibers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Surface plasmon resonance (SPR) based tapered fiber optic sensor having nanostructure film with different particle sizes and volume fractions are analyzed and compared. Using ray-tracing model change in resonance wavelength, propagation length and penetration depth in metal of coupled light are obtained for proposed sensor configuration. The sensitivity of the sensor has been estimated with volume fraction and particle size of nanostructure materials. The sensitivity of the sensor increases with raise in volume fraction along with decline in taper ratio. In addition, the particle size of nanostructure film only affects the detection accuracy. Among all proposed configurations the nanostructures allow film of 2 nm particle size over tapered fiber, shows better detection accuracy and better sensitivity for larger volume fraction of silver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.K. Dondapati, T.K. Sau, C.H. Thomas, A.K. Fernando, D. Stefani, J. Feldmann, ACS Nano 4, 6318–6322 (2010)

    Article  Google Scholar 

  2. V.G. Kravets, F. Schedin, R. Jalil, L. Britnell, R.V. Gorbachev, D. Ansell, B. Thackray, K.S. Novoselov, A.K. Geim, A.V. Kabashin, A.N. Grigorenko, Nat. Mater. 12, 304–309 (2013)

    Article  ADS  Google Scholar 

  3. A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S.B.M. Nair, N. Pala, Biomed. Opt. Express 9, 373–386 (2018)

    Article  Google Scholar 

  4. A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S.B.M. Nair, N. Pala, ACS Sensors 2, 1359–1368 (2017)

    Article  Google Scholar 

  5. C.W. Linn, K.P. Chen, M.C. Su, C.K. Lee, C.C. Yang, Opt. Quant. Electron. 3, 1423 (2005)

    Article  Google Scholar 

  6. J. Homola, Chem. Rev. 108, 462 (2008)

    Article  Google Scholar 

  7. S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater, Adv. Mater. 13, 1501–1505 (2001)

    Article  Google Scholar 

  8. N.C. Lindquist, P. Nagpal, K.M. McPeak, D.J. Norris, S.H. Oh, Rep. Prog. Phys. 75, 036501 (2012)

    Article  ADS  Google Scholar 

  9. B. Gerislioglu, A. Ahmadivand, N. Pala, IEEE Photon. Technol. Lett. 29, 2226–2229 (2017)

    Article  ADS  Google Scholar 

  10. A. Ahmadivand, B. Gerislioglu, N. Pala, J. Phys. Chem. C 121, 19966–19974 (2017)

    Article  Google Scholar 

  11. A. Abbas, M.J. Linman, Q. Cheng, Biosens. Bioelectron. 26, 1815 (2011)

    Article  Google Scholar 

  12. M. Bera, M. Ray, Opt. Commun. 294, 384 (2013)

    Article  ADS  Google Scholar 

  13. A.V. Baryshev, A.M. Merzlikin, M. Inoue, J. Phys. D Appl. Phys. 46, 125107 (2013)

    Article  ADS  Google Scholar 

  14. S. Patskovsky, A.V. Kabashin, M. Meunier, J. Opt. Soc. Am. 20, 1644 (2003)

    Article  ADS  Google Scholar 

  15. R. Sookyoung, T. Chung, B. Lee, Sensors 11, 1565 (2011)

    Article  Google Scholar 

  16. R.K. Verma, A.K. Sharma, B.D. Gupta, Opt. Commun. 281, 1486 (2008)

    Article  ADS  Google Scholar 

  17. G. Nemova, R. Kashyap, Opt. Lett. 31, 2118 (2006)

    Article  ADS  Google Scholar 

  18. M.C. Navarrete, N. Diaz-Herrera, A. Gonzalez-Cano, O. Esteban, Plasmonics 5, 7 (2010)

    Article  Google Scholar 

  19. A.A. Rifat, R. Ahmed, A.K. Yetisen, H. Butt, A. Sabouri, G.A. Mahdiraji, S.H. Yun, F.R.M. Adikan, Sens. Actuators B 243, 311 (2017)

    Article  Google Scholar 

  20. C.D. Singh, Y. Shibata, M. Ogita, Sens. Actuators B 92, 44 (2003)

    Article  Google Scholar 

  21. Y.C. Kim, W. Peng, S. Banerji, K.S. Booksh, Opt. Lett. 30, 2218 (2005)

    Article  ADS  Google Scholar 

  22. S. Kumar, G. Sharma, V. Singh, Opt. Fiber Technol. 20, 333 (2014)

    Article  ADS  Google Scholar 

  23. N.D. Herrera, A.G. Cano, D. Viegas, J.L. Santos, M.C. .Navarrete, Sens. Actuators B 146, 195 (2010)

    Article  Google Scholar 

  24. S. Ju, S. Jeong, Y. Kim, P. Jeon, M.S. Park, H. Jeong, S. Boo, J.H. Jang, W.T. Han, J. Non-Cryst. Solids 383, 146 (2014)

    Article  ADS  Google Scholar 

  25. T. Dimmick, G. Kakarantzas, T. Birks, P. S.J. Russell, Appl. Opt. 38, 6845–6848 (1999)

    Article  ADS  Google Scholar 

  26. G. Brambilla, Optical fibre nanotaper sensors. Opt. Fiber Technol. 16, 331 (2010)

    Article  ADS  Google Scholar 

  27. E. Hutter, J.H. Fendler, D. Roy, J. Phys. Chem. B 105(45), 11159–11168 (2001)

    Article  Google Scholar 

  28. J. Cao, T. Sun, T. Kenneth, V. Grattan, Sens. Actuators B 195, 332 (2014)

    Article  Google Scholar 

  29. S. Singh, B.D. Gupta, Meas. Sci. Technol. 21, 115202 (2010)

    Article  ADS  Google Scholar 

  30. . K. Sharma, B.D. Gupta, Nanotechnology 17, 124 (2006)

    Article  ADS  Google Scholar 

  31. R.K. Roy, S.K. Mandal, A.K. Pal, Eur. Phys. J. B 33, 109 (2003)

    Article  ADS  Google Scholar 

  32. M.M. Miller, A.A. Lazarides, J. Phys. Chem. B 109, 21556 (2005)

    Article  Google Scholar 

  33. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schutz, J. Phys. Chem. B 107, 668 (2003)

    Article  Google Scholar 

  34. K.S. Lee, M.A. El-Sayed, J. Phys. Chem. B 110, 19220 (2006)

    Article  Google Scholar 

  35. S. Link, Z.L. Wang, M.A. El. Sayed, J. Phys. Chem. B 103, 3529 (1999)

    Article  Google Scholar 

  36. N.E. Motl, A.F. Smith, C.J. De Santisa, S.E. Skrabalak, Chem. Soc. Rev. 43, 3823 (2014)

    Article  Google Scholar 

  37. S.A. Maier, Plasmon. Fundam. Appl. Vol. 677 (Springer, US, Boston, MA, 2007) pp. 1–223.

  38. C.J. Ackerson, P.D. Jadzinsky, J.Z. Sexton, D.A. Bushnell, R.D. Kornberg, Bioconjugate Chem. 21(2), 214–218, (2010)

    Article  Google Scholar 

  39. R. Esteban, A.G. Borisov, P. Nordlander, J. Aizpurua, Nat. Commun. 3, 825 (2012)

    Article  ADS  Google Scholar 

  40. K.J. Savage, M.M. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, J.J. Baumberg, Nature 491, 574–577 (2012)

    Article  ADS  Google Scholar 

  41. S.F. Tan, L. Wu, J.K. Yang, P. Bai, M. Bosman, C.A. Nijhuis, Science 343, 1496–1499 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the project no. MRP-MAJOR-ELEC-2013-12554, UGC, New Delhi. Dr. Gaurav Sharma is thankful to DST for NPDF/2017/529. Dr Sushil Kumar is thankful to Prof. Mahendra Nath Pandey and Dr. Shiv Kumar for their support in a well-mannered way.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Yadav, G.C., Sharma, G. et al. Study of surface plasmon resonance sensors based on silver–gold nanostructure alloy film coated tapered optical fibers. Appl. Phys. A 124, 695 (2018). https://doi.org/10.1007/s00339-018-2120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2120-5

Navigation