Skip to main content
Log in

Effects of single-pulse Al2O3 insertion in TiO2 oxide memristors by low temperature ALD

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Al2O3/TiO2 multilayer structures were fabricated by atomic layer deposition (ALD) to examine the effect of Al2O3 on the resistive switching behavior of TiO2 thin films. The doping process via ALD consisted in the fabrication of a multilayer structure, in which Al2O3 single layers were periodically inserted into TiO2 films during ALD. The presence of Al atoms induced localized structural and chemical variations that allowed tuning the electrical response of TiO2 devices. Multilayer and doped samples were deposited at low temperature (100 °C), using TiCl4 and TMA as metal precursor and H2O as oxidation source. The memristive behavior of Pt/TiOx:AlOy/Pt symmetric devices was tested in voltage sweep mode, showing a bipolar switching with stable high and low resistance states. The variation of doping concentration of Al2O3 in the TiO2 film obtained by ALD allowed to tune switching voltages, resistance values and ROFF/RON ratio. The fine control of these variables adds a degree of freedom in the control of MIM memristors, exploiting the combination of different binary oxides and producing devices with highly defined and tunable electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.M. George, Chem. Rev. 110, 111 (2010)

    Article  Google Scholar 

  2. M. Leskelä, M. Ritala, Thin Solid Films 409, 138 (2002)

    Article  ADS  Google Scholar 

  3. P. Knauth, H.L. Tuller, J. Appl. Phys. 85, 897 (1999)

    Article  ADS  Google Scholar 

  4. J.J. Yang, N.P. Kobayashi, J.P. Strachan, M.X. Zhang, D.A.A. Ohlberg, M.D. Pickett, Z. Li, G. Medeiros-Ribeiro, R.S. Williams, Chem. Mater. 23, 123 (2011)

    Article  Google Scholar 

  5. A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, Nano Lett. 7, 2183 (2007)

    Article  ADS  Google Scholar 

  6. P.F. Siles, M. de Pauli, C.C. Bof Bufon, S.O. Ferreira, J. Bettini, O.G. Schmidt, A. Malachias, Nanotechnology 24, 35702 (2013)

    Article  Google Scholar 

  7. L. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  8. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  9. J.J. Yang, B.J. Choi, M.-X. Zhang, A.C. Torrezan, J.P. Strachan, R.S. Williams, ECS Trans. 58, 9 (2013)

    Article  Google Scholar 

  10. A.S. Oblea, A. Timilsina, D. Moore, K.A. Campbell, Proc. Int. Jt. Conf. Neural Netw. 3, 4 (2010)

    Google Scholar 

  11. T. Berzina, S. Erokhina, P. Camorani, O. Konovalov, V. Erokhin, M.P. Fontana, ACS Appl. Mater. Interfaces 1, 2115 (2009)

    Article  Google Scholar 

  12. A. Chiolerio, I. Roppolo, D. Perrone, A. Sacco, K. Rajan, A. Chiappone, S. Bocchini, K. Bejtka, C. Ricciardi, C.F. Pirri, Appl. Surf. Sci. 424, 352–358 (2017)

    Article  ADS  Google Scholar 

  13. S. Porro, C. Ricciardi, RSC Adv. 5, 68565 (2015)

    Article  Google Scholar 

  14. S. Porro, E. Accornero, C.F. Pirri, C. Ricciardi, Carbon. 85, 383 (2015)

    Article  Google Scholar 

  15. Y.Y. Chen, S. Member, L. Goux, S. Clima, B. Govoreanu, S. Member, R. Degraeve, G.S. Kar, A. Fantini, G. Groeseneken, D.J. Wouters, M. Jurczak, IEEE Electron Dev. Lett. 60, 1114 (2013)

    Article  Google Scholar 

  16. Y. Yang, S. Choi, W. Lu, Nano Lett. 13, 2908 (2013)

    Article  ADS  Google Scholar 

  17. S. Samanta, S. Maikap, A. Roy, S. Jana, J.T. Qiu, Adv. Mater. Interfaces 4, 1700959 (2017)

    Article  Google Scholar 

  18. S. Chakrabarti, S. Maikap, S. Samanta, S. Jana, A. Roy, J.T. Qiu, Phys. Chem. Chem. Phys. 19, 25938 (2017)

    Article  Google Scholar 

  19. M. Laurenti, S. Porro, C.F. Pirri, C. Ricciardi, A. Chiolerio, Crit. Rev. Solid State Mater. Sci. 42, 153 (2017)

    Article  ADS  Google Scholar 

  20. D. Conti, A. Lamberti, S. Porro, P. Rivolo, A. Chiolerio, C.F. Pirri, C. Ricciardi, Nanotechnology 27, 485208 (2016)

    Article  Google Scholar 

  21. L. Qingjiang, A. Khiat, I. Salaoru, C. Papavassiliou, X. Hui, T. Prodromakis, Sci. Rep. 4, 4522 (2015)

    Article  Google Scholar 

  22. A. Sawa, Mater. Today 11, 28 (2008)

    Article  Google Scholar 

  23. H. Akinaga, H. Shima, Proc. IEEE 98, 2237 (2010)

    Article  Google Scholar 

  24. C. Zamarreño-Ramos, L.A. Camuñas-Mesa, J.A. Perez-Carrasco, T. Masquelier, T. Serrano-Gotarredona, B. Linares-Barranco, Front. Neurosci. 5, 1 (2011)

    Article  Google Scholar 

  25. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010)

    Article  ADS  Google Scholar 

  26. D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010)

    Article  ADS  Google Scholar 

  27. V. Miikkulainen, M. Leskelä, M. Ritala, R.L. Puurunen, J. Appl. Phys. 113, 2 (2013)

    Article  Google Scholar 

  28. S. Porro, A. Jasmin, K. Bejtka, D. Conti, D. Perrone, S. Guastella, C.F. Pirri, A. Chiolerio, C. Ricciardi, J. Vac. Sci. Technol. A Vac. Surf. Film. 34, 01A147 (2016)

    Article  Google Scholar 

  29. M.D. Groner, F.H. Fabreguette, J.W. Elam, S.M. George, Chem. Mater. 16, 639 (2004)

    Article  Google Scholar 

  30. M. Sánchez-Agudo, L. Soriano, C. Quirós, Surf. Sci. 485, 470 (2001)

    Article  ADS  Google Scholar 

  31. M.a. Omari, R.S. Sorbello, C.R. Aita, J. Vac. Sci. Technol. A Vac. Surf. Film. 24, 317 (2006)

    Article  Google Scholar 

  32. S. Kim, G. Choi, J. Kim, C. Hwang, Chem. Mater. 3723 (2008)

  33. R.L. Puurunen, Chem. Vap. Depos. 9, 327 (2003)

    Article  Google Scholar 

  34. R.L. Puurunen, J. Appl. Phys. 97, (2005)

  35. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006)

    Article  ADS  Google Scholar 

  36. R. Waser, Nanoelectronics and Information Technology (Wiley, Hoboken, 2012)

    Google Scholar 

  37. E.W. Lim, R. Ismail, Electronics 4, 586 (2015)

    Article  Google Scholar 

  38. S. Kim, S.H. Choi, W. Lu, ACS Nano 8, 2369 (2014)

    Article  Google Scholar 

  39. R. Degraeve, G. Groeseneken, R. Bellens, J.L. Ogier, M. Depas, P.J. Roussel, H.E. Maes, IEEE Trans. Electron Dev. 45, 904 (1998)

    Article  ADS  Google Scholar 

  40. G. Lee, B.K. Lai, C. Phatak, R.S. Katiyar, O. Auciello, J. Appl. Phys. 114, 3 (2013)

    Google Scholar 

  41. Y. Lin, D. Huang, J. Lou, T. Tseng, Thin Solid Films 644, 10 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The support by M. Raimondo in helping with FESEM measurements, S. Guastella with the XPS characterization and D. Perrone with sputtering deposition and fabrication of devices is gratefully acknowledged. This work was partially supported by “Politecnico di Torino” and “Compagnia di San Paolo” through the initiative “Neural Egineering and Computation (NEC)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Giovinazzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giovinazzo, C., Ricciardi, C., Pirri, C.F. et al. Effects of single-pulse Al2O3 insertion in TiO2 oxide memristors by low temperature ALD. Appl. Phys. A 124, 686 (2018). https://doi.org/10.1007/s00339-018-2112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2112-5

Navigation