Abstract
Fe100−XCuX alloy nanowire (NW) arrays with uniform diameter and length were synthesized in homogenous and well-ordered anodized aluminum oxide templates using alternating current electrochemical deposition technique. The structural morphology of templates and NWs was examined through scanning electron microscope, which clearly shows the diameter was from 50 to 65 and 50 to 56 nm, respectively, while the length of both was up to 10 µm. The formation of FeCu alloy NWs has been confirmed from energy-dispersive X-ray analysis. The structural analysis was examined through X-ray diffraction technique, which confirmed its polycrystalline structure. The effect of Cu on grain size was measured by Debye–Scherrer formula that shows increasing order with increase of Cu at.% in the synthesis of Fe100─XCuX alloy NWs. The Fe-bcc peaks were completely suppressed as well as a shift was produced towards lower angle. Then bcc crystal structure of FeCu alloy NWs was observed along with Cu-fcc reflection planes. The coercivity (Hc) and squareness (\({M_{\text{R}}}{\text{/}}{M_{\text{S}}}\)) were decreased with increase of Cu at.% (non-magnetic) that influenced the Fe100−XCuX NWs composition and magnetic properties. Cu, which is diamagnetic, with an atomic radius greater than Fe, suppresses the alignments of the magnetic moment of Fe (ferromagnetic) at high at.%. The large squareness along the NWs confirmed easy axis parallel to the wires.
Similar content being viewed by others
References
Q. Cai, J.X. Zhang, X. Chen, Z.J. Chen, W. Wang, G. Mo, Z.H. Wu, L.D. Zhang, W. Pan, Structural study on Ni nanowires in an anodic alumina membrane by using in situ heating extended X-ray absorption fine structure and X-ray diffraction techniques. J. Phys.:Condens. Matter. 20, 115205 (2008)
K.S. Leschkies, R. Divakar, J. Basu, E.E. Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793–1798 (2007)
M. Czerner, B.Y. Yavorsky, I. Mertig, Fully relaxed magnetic structure of transition metal nanowires: first-principles calculations. Phys. Rev. B 77, 104411 (2008)
B.A. Camacho-Flores, O. Martínez-Álvarez, M.C. Arenas-Arrocena, R. Garcia-Contreras, L. Argueta-Figueroa, J. de la Fuente-Hernández, L.S. Acosta-Torres, Copper: synthesis techniques in nanoscale and powerful application as an antimicrobial agent. J Nanomater. 16, 423 (2015)
N. Ahmad, S. Khan, W.J. Li, M. Saddique, S.A. Shah, J. Iqbal, A. Majid, X.F. Han, Potential dependent tuning of magnetic and structural properties of electrodeposited NiZn nanowires in Al2O3 templates. J. Magn. Magn. Mater. 441, 696–701 (2017)
S. Khan, N. Ahmad, N. Ahmed, A. Safeer, J. Iqbal, X.F. Han, Structural, magnetic and transport properties of Fe-based full Heusler alloy Fe2CoSn nanowires prepared by template-based electrodeposition. J. Magn. Magn. Mater. 465, 462–470 (2018)
D.L. Shimanovich et al., Preparation and morphology-dependent wettability of porous alumina membranes. Beilstein J. Nanotechnol 9, 1423–1438 (2018)
M.-A. Farid, A. Bordbar-Khiabani, A. Ahangari-Asl, Three-phase PANI@nano-Fe3O4@CFs heterostructure: fabrication, characterization and investigation of microwave absorption and EMI shielding of PANI@ nano-Fe3O4@ CFs/epoxy hybrid composite. Compos. Sci. Technol. 150, 65–78 (2017)
A.V. Trukhanov et al., Magnetotransport properties and calculation of the stability of GMR coefficients in CoNi/Cu multilayer quasi-one-dimensional structures. Mater. Res Express. 3, 065010 (2016)
A.T. Morchenko et al., Structural and magnetic transformations in amorphous ferromagnetic microwires during thermomagnetic treatment under conditions of directional crystallization. J. Alloys Compd. 698, 685–691 (2017)
K. Nielsch, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S.F. Fischer, H. Kronmuller, Hexagonally ordered 100 nm period nickel nanowire arrays. Appl. Phys.Lett. 79, 1360–1362 (2001)
L. Piraux, J.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, A. Fert, Giant magnetoresistance in magnetic multilayered nanowires. Appl. Phys. Lett. 65, 2484–2486 (1994)
A. Blondel, J.P. Meier, B. Doudin, J.P. Ansermet, Giant magnetoresistance of nanowires of multilayers. Appl. Phys. Lett. 65, 3019–3021 (1994)
M. Tanase, D.M. Silevitch, A. Hultgren, L.A. Bauer, P.C. Searson, G.J. Meyer, D.H. Reich, Magnetic trapping and self-assembly of multicomponent nanowires. J. Appl. Phys. 91, 8549–8551 (2002)
J. Sun, M. He, X. Liu, N. Gu, Optimizing colloidal dispersity of magnetic nanoparticles based on magnetic separation with magnetic nanowires array. Appl. Phys. A 118, 569–577 (2015)
T.I. Zubar et al., Anomalies in Ni–Fe nanogranular films growth. J. Alloys Compd. 748, 970–978 (2018)
A.V. Trukhanov et al., Specific features of formation and growth mechanism of multilayered quasi-one-dimensional (Co–Ni–Fe)/Cu systems in pores of anodic alumina matrices. Crystallogr. Rep. 59(5), 744–748 (2014)
T.I. Zubar et al., Anomalies in growth of electrodeposited Ni–Fe nanogranular films. Cryst Eng Comm 20, 2306–2315 (2018)
F.H. Xue, G.T. Fei, B. Wu, P. Cui, L.D. Zhang, Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays. J. Am. Chem. Soc. 127, 15348–15349 (2005)
L. Yao, Y.-H. Ye, L. Yang, Gradient porous alumina films with different pore distributions by anodization of aluminum. Appl. Phys. A. 116, 1915–1919 (2014)
G. Mo, Q. Cai, L.S. Jiang, W. Wan, K.H. Zhang, W.D. Cheng, X.Q. Xing, Z.J. Chen, Z.H. Wu, Thermal expansion behavior study of Co nanowire array with in situ X-ray diffraction and X-ray absorption fine structure techniques. Appl. Phys. Lett. 93, 171912 (2008)
H. Xu, D.H. Qin, Z. Yang, H.L. Li, Fabrication and characterization of highly ordered zirconia nanowire arrays by sol–gel template method. Mater. Chem. Phys. 80, 524–528 (2003)
N. Ahmad, S. Khan, M.A. Liaqat, M. Awais, S.A. Shah, I. Ahmed, N. Jabeen, A. Majid, J. Iqbal, Influence of voltage variation on structure and magnetic properties of Co1−xSnx(X = 0.3–0.7) nanowire alloys in alumina by electrochemical deposition. Appl. Phys. A. 123, 65 (2017)
A. Huczko, Template-based synthesis of nanomaterials. Appl. Phys. A. 70, 365–376 (2000)
S. Shingubara, Fabrication of nanomaterials using porous alumina templates. J. Nanopart. Res. 5, 17–30 (2003)
T.M. Whitney, P.C. Searson, J.S. Jiang, C.L. Chien, Fabrication and magnetic properties of arrays of metallic nanowires. Science. 261, 1316 (1993)
D.J. Sellmyer, M. Zheng, R. Skomski, Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys. Condens. Matter. 13, R433 (2001)
H.R. Khan, K. Petrikowski, Magnetic and structural properties of the electrochemically deposited arrays of Co and CoFe nanowires. J. Magn. Magn. Mater. 249, 458–461 (2002)
X.Y. Zhang, G.H. Wen, Y.F. Chan, R.K. Zheng, X.X. Zhang, N. Wang, Fabrication and magnetic properties of ultrathin Fe nanowire arrays. Appl. Phys. Lett. 83, 3341 (2003)
M.V. Ananth, N.V. Parthasaradhy, Influence of plating variables on the electrocatalytic behavior of Ni–Mn electrocoated cathodes for alkaline water electrolysis. Bull. Electrochem. 6, 40–41 (1990)
S. Khan, N. Ahmad, N. Ahmed, X.F. Han, “Analysis of electronic, magnetic and half-metallic properties of L21-type (Co2Mn0.5Fe0.5Sn) Heusler alloy nanowires synthesized by AC-electrodeposition in AAO templates. J. Magn. Magn. Mater. 460, 120–127 (2018)
T. Ohgai, L. Gravier, X. Hoffer, M. Lindeberg, K. Hjort, R. Spohr, Ansermet, Template synthesis and magnetoresistance property of Ni and Co single nanowires electrodeposited into nanopores with a wide range of aspect ratios. J. Phys. D Appl. Phys 36, 3109–3114 (2003)
D.G.W. Goad, M. Moskovits, Colloidal metal in aluminum-oxide. J. Appl. Phys. 49(5), 2929–2934 (1978)
E. Palibroda, T. Farcas, A. Lupsan, A new image of porous aluminium oxide. Mater. Sci. Eng. B. 32, 1–5 (1995)
A.S. Samardak, A.V. Ognev, A.Y. Samardak, E.V. Stebliy, E.B. Modin, L.A. Chebotkevich, S.V. Komogortsev, A. Stancu, E. Panahi-Danaei, A. Fardi-Ilkhichy, F. Nasirpouri, Variation of magnetic anisotropy and temperature-dependent FORC probing of compositionally tuned Co–Ni alloy nanowires. J. Alloys Compd. 732, 683–693 (2018)
M. Darques, J. Spiegel, J.D. Medina, I. Huynen, L. Piraux, Ferromagnetic nanowire-loaded membranes for microwave electronics. J. Magn. Magn. Mater. 321, 2055–2065 (2009)
S. Shigubara, O. Okino, Y. Sayerma, Ordered two-dimensional nanowire array formation using self-organized nanoholes of anodically oxidized aluminum. J. Appl. Phys. 36, 7791 (1997)
S.N. Anitha, I. Jayakumari, Synthesis and analysis of nanocrystalline Fe2Mn2Ni0.5Zn1.5O9 at different treating temperature. J. Nanosci. Nanotechnol. 1(1), 26–31 (2015)
K. Maleki, S. Sanjabi, Z. Alemipour, DC electrodeposition of NiGa alloy nanowires in AAO template. J. Magn. Magn. Mater 395, 289–293 (2015)
B. Szpunar, U. Erb, G. Palumbo, K.T. Aust, L.J. Lewis, Magnetism in complex atomic structures: grain boundaries in nickel. Phys. Rev. B 53, 5547 (1996)
Acknowledgements
Higher education Commission, Pakistan, is acknowledged for financial support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Khan, S., Ahmad, N., Safeer, A. et al. Compositional dependent morphology, structural and magnetic properties of Fe100−XCuX alloy nanowires via electrodeposition in AAO templates. Appl. Phys. A 124, 678 (2018). https://doi.org/10.1007/s00339-018-2075-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-018-2075-6