Skip to main content
Log in

Compositional dependent morphology, structural and magnetic properties of Fe100−XCuX alloy nanowires via electrodeposition in AAO templates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Fe100−XCuX alloy nanowire (NW) arrays with uniform diameter and length were synthesized in homogenous and well-ordered anodized aluminum oxide templates using alternating current electrochemical deposition technique. The structural morphology of templates and NWs was examined through scanning electron microscope, which clearly shows the diameter was from 50 to 65 and 50 to 56 nm, respectively, while the length of both was up to 10 µm. The formation of FeCu alloy NWs has been confirmed from energy-dispersive X-ray analysis. The structural analysis was examined through X-ray diffraction technique, which confirmed its polycrystalline structure. The effect of Cu on grain size was measured by Debye–Scherrer formula that shows increasing order with increase of Cu at.% in the synthesis of Fe100─XCuX alloy NWs. The Fe-bcc peaks were completely suppressed as well as a shift was produced towards lower angle. Then bcc crystal structure of FeCu alloy NWs was observed along with Cu-fcc reflection planes. The coercivity (Hc) and squareness (\({M_{\text{R}}}{\text{/}}{M_{\text{S}}}\)) were decreased with increase of Cu at.% (non-magnetic) that influenced the Fe100−XCuX NWs composition and magnetic properties. Cu, which is diamagnetic, with an atomic radius greater than Fe, suppresses the alignments of the magnetic moment of Fe (ferromagnetic) at high at.%. The large squareness along the NWs confirmed easy axis parallel to the wires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Cai, J.X. Zhang, X. Chen, Z.J. Chen, W. Wang, G. Mo, Z.H. Wu, L.D. Zhang, W. Pan, Structural study on Ni nanowires in an anodic alumina membrane by using in situ heating extended X-ray absorption fine structure and X-ray diffraction techniques. J. Phys.:Condens. Matter. 20, 115205 (2008)

    ADS  Google Scholar 

  2. K.S. Leschkies, R. Divakar, J. Basu, E.E. Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793–1798 (2007)

    Article  ADS  Google Scholar 

  3. M. Czerner, B.Y. Yavorsky, I. Mertig, Fully relaxed magnetic structure of transition metal nanowires: first-principles calculations. Phys. Rev. B 77, 104411 (2008)

    Article  ADS  Google Scholar 

  4. B.A. Camacho-Flores, O. Martínez-Álvarez, M.C. Arenas-Arrocena, R. Garcia-Contreras, L. Argueta-Figueroa, J. de la Fuente-Hernández, L.S. Acosta-Torres, Copper: synthesis techniques in nanoscale and powerful application as an antimicrobial agent. J Nanomater. 16, 423 (2015)

    Google Scholar 

  5. N. Ahmad, S. Khan, W.J. Li, M. Saddique, S.A. Shah, J. Iqbal, A. Majid, X.F. Han, Potential dependent tuning of magnetic and structural properties of electrodeposited NiZn nanowires in Al2O3 templates. J. Magn. Magn. Mater. 441, 696–701 (2017)

    Article  ADS  Google Scholar 

  6. S. Khan, N. Ahmad, N. Ahmed, A. Safeer, J. Iqbal, X.F. Han, Structural, magnetic and transport properties of Fe-based full Heusler alloy Fe2CoSn nanowires prepared by template-based electrodeposition. J. Magn. Magn. Mater. 465, 462–470 (2018)

    Article  ADS  Google Scholar 

  7. D.L. Shimanovich et al., Preparation and morphology-dependent wettability of porous alumina membranes. Beilstein J. Nanotechnol 9, 1423–1438 (2018)

    Article  Google Scholar 

  8. M.-A. Farid, A. Bordbar-Khiabani, A. Ahangari-Asl, Three-phase PANI@nano-Fe3O4@CFs heterostructure: fabrication, characterization and investigation of microwave absorption and EMI shielding of PANI@ nano-Fe3O4@ CFs/epoxy hybrid composite. Compos. Sci. Technol. 150, 65–78 (2017)

    Article  Google Scholar 

  9. A.V. Trukhanov et al., Magnetotransport properties and calculation of the stability of GMR coefficients in CoNi/Cu multilayer quasi-one-dimensional structures. Mater. Res Express. 3, 065010 (2016)

    Article  ADS  Google Scholar 

  10. A.T. Morchenko et al., Structural and magnetic transformations in amorphous ferromagnetic microwires during thermomagnetic treatment under conditions of directional crystallization. J. Alloys Compd. 698, 685–691 (2017)

    Article  Google Scholar 

  11. K. Nielsch, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S.F. Fischer, H. Kronmuller, Hexagonally ordered 100 nm period nickel nanowire arrays. Appl. Phys.Lett. 79, 1360–1362 (2001)

    Article  ADS  Google Scholar 

  12. L. Piraux, J.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, A. Fert, Giant magnetoresistance in magnetic multilayered nanowires. Appl. Phys. Lett. 65, 2484–2486 (1994)

    Article  ADS  Google Scholar 

  13. A. Blondel, J.P. Meier, B. Doudin, J.P. Ansermet, Giant magnetoresistance of nanowires of multilayers. Appl. Phys. Lett. 65, 3019–3021 (1994)

    Article  ADS  Google Scholar 

  14. M. Tanase, D.M. Silevitch, A. Hultgren, L.A. Bauer, P.C. Searson, G.J. Meyer, D.H. Reich, Magnetic trapping and self-assembly of multicomponent nanowires. J. Appl. Phys. 91, 8549–8551 (2002)

    Article  ADS  Google Scholar 

  15. J. Sun, M. He, X. Liu, N. Gu, Optimizing colloidal dispersity of magnetic nanoparticles based on magnetic separation with magnetic nanowires array. Appl. Phys. A 118, 569–577 (2015)

    Article  ADS  Google Scholar 

  16. T.I. Zubar et al., Anomalies in Ni–Fe nanogranular films growth. J. Alloys Compd. 748, 970–978 (2018)

    Article  Google Scholar 

  17. A.V. Trukhanov et al., Specific features of formation and growth mechanism of multilayered quasi-one-dimensional (Co–Ni–Fe)/Cu systems in pores of anodic alumina matrices. Crystallogr. Rep. 59(5), 744–748 (2014)

    Article  ADS  Google Scholar 

  18. T.I. Zubar et al., Anomalies in growth of electrodeposited Ni–Fe nanogranular films. Cryst Eng Comm 20, 2306–2315 (2018)

    Article  Google Scholar 

  19. F.H. Xue, G.T. Fei, B. Wu, P. Cui, L.D. Zhang, Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays. J. Am. Chem. Soc. 127, 15348–15349 (2005)

    Article  Google Scholar 

  20. L. Yao, Y.-H. Ye, L. Yang, Gradient porous alumina films with different pore distributions by anodization of aluminum. Appl. Phys. A. 116, 1915–1919 (2014)

    Article  ADS  Google Scholar 

  21. G. Mo, Q. Cai, L.S. Jiang, W. Wan, K.H. Zhang, W.D. Cheng, X.Q. Xing, Z.J. Chen, Z.H. Wu, Thermal expansion behavior study of Co nanowire array with in situ X-ray diffraction and X-ray absorption fine structure techniques. Appl. Phys. Lett. 93, 171912 (2008)

    Article  ADS  Google Scholar 

  22. H. Xu, D.H. Qin, Z. Yang, H.L. Li, Fabrication and characterization of highly ordered zirconia nanowire arrays by sol–gel template method. Mater. Chem. Phys. 80, 524–528 (2003)

    Article  Google Scholar 

  23. N. Ahmad, S. Khan, M.A. Liaqat, M. Awais, S.A. Shah, I. Ahmed, N. Jabeen, A. Majid, J. Iqbal, Influence of voltage variation on structure and magnetic properties of Co1−xSnx(X = 0.3–0.7) nanowire alloys in alumina by electrochemical deposition. Appl. Phys. A. 123, 65 (2017)

    Article  ADS  Google Scholar 

  24. A. Huczko, Template-based synthesis of nanomaterials. Appl. Phys. A. 70, 365–376 (2000)

    Article  ADS  Google Scholar 

  25. S. Shingubara, Fabrication of nanomaterials using porous alumina templates. J. Nanopart. Res. 5, 17–30 (2003)

    Article  ADS  Google Scholar 

  26. T.M. Whitney, P.C. Searson, J.S. Jiang, C.L. Chien, Fabrication and magnetic properties of arrays of metallic nanowires. Science. 261, 1316 (1993)

    Article  ADS  Google Scholar 

  27. D.J. Sellmyer, M. Zheng, R. Skomski, Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys. Condens. Matter. 13, R433 (2001)

    Article  ADS  Google Scholar 

  28. H.R. Khan, K. Petrikowski, Magnetic and structural properties of the electrochemically deposited arrays of Co and CoFe nanowires. J. Magn. Magn. Mater. 249, 458–461 (2002)

    Article  ADS  Google Scholar 

  29. X.Y. Zhang, G.H. Wen, Y.F. Chan, R.K. Zheng, X.X. Zhang, N. Wang, Fabrication and magnetic properties of ultrathin Fe nanowire arrays. Appl. Phys. Lett. 83, 3341 (2003)

    Article  ADS  Google Scholar 

  30. M.V. Ananth, N.V. Parthasaradhy, Influence of plating variables on the electrocatalytic behavior of Ni–Mn electrocoated cathodes for alkaline water electrolysis. Bull. Electrochem. 6, 40–41 (1990)

    Google Scholar 

  31. S. Khan, N. Ahmad, N. Ahmed, X.F. Han, “Analysis of electronic, magnetic and half-metallic properties of L21-type (Co2Mn0.5Fe0.5Sn) Heusler alloy nanowires synthesized by AC-electrodeposition in AAO templates. J. Magn. Magn. Mater. 460, 120–127 (2018)

    Article  ADS  Google Scholar 

  32. T. Ohgai, L. Gravier, X. Hoffer, M. Lindeberg, K. Hjort, R. Spohr, Ansermet, Template synthesis and magnetoresistance property of Ni and Co single nanowires electrodeposited into nanopores with a wide range of aspect ratios. J. Phys. D Appl. Phys 36, 3109–3114 (2003)

    Article  ADS  Google Scholar 

  33. D.G.W. Goad, M. Moskovits, Colloidal metal in aluminum-oxide. J. Appl. Phys. 49(5), 2929–2934 (1978)

    Article  ADS  Google Scholar 

  34. E. Palibroda, T. Farcas, A. Lupsan, A new image of porous aluminium oxide. Mater. Sci. Eng. B. 32, 1–5 (1995)

    Article  Google Scholar 

  35. A.S. Samardak, A.V. Ognev, A.Y. Samardak, E.V. Stebliy, E.B. Modin, L.A. Chebotkevich, S.V. Komogortsev, A. Stancu, E. Panahi-Danaei, A. Fardi-Ilkhichy, F. Nasirpouri, Variation of magnetic anisotropy and temperature-dependent FORC probing of compositionally tuned Co–Ni alloy nanowires. J. Alloys Compd. 732, 683–693 (2018)

    Article  Google Scholar 

  36. M. Darques, J. Spiegel, J.D. Medina, I. Huynen, L. Piraux, Ferromagnetic nanowire-loaded membranes for microwave electronics. J. Magn. Magn. Mater. 321, 2055–2065 (2009)

    Article  ADS  Google Scholar 

  37. S. Shigubara, O. Okino, Y. Sayerma, Ordered two-dimensional nanowire array formation using self-organized nanoholes of anodically oxidized aluminum. J. Appl. Phys. 36, 7791 (1997)

    Article  Google Scholar 

  38. S.N. Anitha, I. Jayakumari, Synthesis and analysis of nanocrystalline Fe2Mn2Ni0.5Zn1.5O9 at different treating temperature. J. Nanosci. Nanotechnol. 1(1), 26–31 (2015)

    Google Scholar 

  39. K. Maleki, S. Sanjabi, Z. Alemipour, DC electrodeposition of NiGa alloy nanowires in AAO template. J. Magn. Magn. Mater 395, 289–293 (2015)

    Article  ADS  Google Scholar 

  40. B. Szpunar, U. Erb, G. Palumbo, K.T. Aust, L.J. Lewis, Magnetism in complex atomic structures: grain boundaries in nickel. Phys. Rev. B 53, 5547 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Higher education Commission, Pakistan, is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naeem Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Ahmad, N., Safeer, A. et al. Compositional dependent morphology, structural and magnetic properties of Fe100−XCuX alloy nanowires via electrodeposition in AAO templates. Appl. Phys. A 124, 678 (2018). https://doi.org/10.1007/s00339-018-2075-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2075-6

Navigation