Skip to main content
Log in

Ion- and electron-beam-induced structural changes in cubic yttria-stabilized zirconia

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thin yttria-stabilized zirconia (YSZ) (100) transmission electron microscopy (TEM) samples prepared using 5 kV Ar ion sputtering and subsequent annealing with 5 kV electron beams under ultrahigh vacuum (UHV) environment were observed with TEM. A new phase which is electron conducting and has high electron beam tolerance is formed. The phase grows epitaxially with the YSZ matrix and has a cubic structure. It is estimated that substrate YSZ reacted with surface contaminants to from ZrC during electron beam annealing. When the substrates were thoroughly cleaned before ion beam irradiation, no new phase formation was observed. Instead, formation of faceted holes was identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.A. Boukamp, The amazing perovskite anode. Nat. Mater. 2, 294–296 (2003)

    Article  ADS  Google Scholar 

  2. R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, D. Stöver, Overview on advanced thermal barrier coatings. Surf. Coat. Tech. 205, 938–942 (2010)

    Article  Google Scholar 

  3. N. Miura, M. Nakatou, S. Zhuiykov, Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature. Sens. Actuators B 93, 221–228 (2003)

    Article  Google Scholar 

  4. M.N. Tsampas, F.M. Sapountzi, P. Vernoux, Applications of yttria stabilized zirconia (YSZ) in catalysis. Cat. Sci. Tech. 5, 4884–4900 (2015)

    Article  Google Scholar 

  5. P. kalita, S. Ghosh, G. Sattonnay, U.B. Singh, V. Grover, R. Shukla, S. Amirthapandian, R. Meena, A.K. Tyagi, D.K. Avasthi, Role of temperature in the radiation stability of yttria stabilized zirconia under swift heavy ion irradiation: a study from the perspective of nuclear reactor applications. J. Appl. Phys. 122, 025902 (2017)

    Article  ADS  Google Scholar 

  6. G. Velişa, A. Debelle, L. Thomé, S. Mylonas, L. Vincent, A. Boulle, J. Jagielski, D. Pantelica, Implantation of high concentration noble gases in cubic zirconia and silicon carbide: a contrasted radiation tolerance. J. Nucl. Mat. 451, 14–23 (2014)

    Article  ADS  Google Scholar 

  7. U. Vohrer, H.–D. Wiemhfer, W. Göpel, B.A. von Hassel, A.J. Burggraaf, Electronic properties of ion-implanted yttria-stabilized zirconia. Solid State Ionics 59, 141–149 (1993)

    Article  Google Scholar 

  8. W.C. Simpson, W.K. Wang, J.A. Yarmoff, T.M. Orlando, Photon- and electron-stimulated desorption of O+ from zirconia. Surf. Sci. 423, 225–231 (1999)

    Article  ADS  Google Scholar 

  9. G.M. Ingo, G. Marletta, Ion beam induced reduction of metallic cations in yttria-zirconia. Nucl. Inst. Met. Phys. Res. B 116, 440–446 (1996)

    Article  ADS  Google Scholar 

  10. M. Cotter, R.G. Egdell, Electron beam reduction of cubic Y-doped ZrO2(100): a study by X-ray photoelectron spectroscopy. J. Solid State Chem. 66, 364–368 (1987)

    Article  ADS  Google Scholar 

  11. J.S. Moya, R. Moreno,, J. Requena, Black color in partially stabilized zirconia. J. Am. Ceram. Soc. 71, C479–C480 (1988)

    Article  Google Scholar 

  12. R.W. Rice, Comment on “Black color in partially stabilized zirconia”. J. Am. Ceram. Soc. 74, 1745–1746 (1991)

    Article  Google Scholar 

  13. X. Guo, Y.–Q. Sun, K. Cui, Darkening of zirconia: a problem arising from oxygen sensors in practice. Sens. Actuators B 31, 139–145 (1996)

    Article  Google Scholar 

  14. V.R. Pai Verneker, D. Nagle, Effect of reduction on vickers hardness of stabilized zirconia. J. Mat. Sci. Lett. 9, 192–194 (1990)

    Article  Google Scholar 

  15. D. Nagle, V.R. Pai Verneker, A.N. Petelin, G. Groff, Optical absorption of electrolytically colored single crystals of yttria-stabilized zirconia. Mat. Res. Bull. 24, 619–623 (1989)

    Article  Google Scholar 

  16. D.J. Barber, Radiation damage in ion-millled specimens: characteristics, effects and methods of damage limitation. Ultramic. 52, 101–125 (1993)

    Article  Google Scholar 

  17. J.F. Ziegler, J.P. Biersack, The stopping and range of ions in matter (SRIM, Version 2013)

  18. J. Cazaux, Correlations between ionization radiation damage and charging effects in transmission electron microscopy. Ultramic 60, 411–425 (1995)

    Article  Google Scholar 

  19. R.F. Egerton, P. Li, M. Malac, Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004)

    Article  Google Scholar 

  20. R.J. Nicholls, N. Ni. S. Lozano-Perez, A. London, D.W. McComb, P.D. Nellist, C.R.M. Grovenor, C.J. Pichard, J.R. Yates, Crystal structure of the ZrO phase at zirconium/zirconium oxide interfaces. Adv. Eng. Mat. 17, 211–215 (2015)

    Article  Google Scholar 

  21. G. Velişa, S. Mylonas, P. Trocellier, L. Thomé, A. Debelle, S. Vaubaillon, C. Bachelet, Ion beam syntheses of ZrCxOy nanoparticles in cubic zirconia. J. Appl. Phys. 119, 165902 (2016)

    Article  ADS  Google Scholar 

  22. J.J. Hren, Specimen contamination in analytical electron microscopy: sources and solutions. Ultramic 3, 375–380 (1979)

    Article  Google Scholar 

  23. R.G. Green, L. Barré, J.B. Giorgi, Nano-structures in YSZ(100) surfaces: implication for metal deposition experiments. Surf. Sci. 601, 792–802 (2007)

    Article  ADS  Google Scholar 

  24. M.W. Chase, N.I.S.T.-J.A.N.A.F. Thermochemical, Am Ceram Soc and Am Inst Phys. (NIST, Gaithersburg, 1998)

  25. A.H. Heuer, V.L.K. Lou, Volatility diagrams for silica, silicon nitride, and silicon carbide and their application to high-temperature decomposition and oxidation. J. Am. Ceram. Soc. 73, 2789–2803 (1990)

    Article  Google Scholar 

  26. P. AMaitre, Lefort, Solid state reaction of zirconia with carbon. Solid State Ionics 104, 109–122 (1997)

    Article  Google Scholar 

  27. D.–W. Lee, S.–M. Jin, J.–H. Yu, H.–M. Lee, Synthesis of ultrafine ZrC powders by novel reduction process. Mater. Trans. 51, 2266–2268 (2010)

    Article  Google Scholar 

  28. M. Tanaka, K. Furuya, M. Takeguchi, T. Honda, Surface observation of Mo nanocrystals deposited on Si (111) thin films by a newly developed ultrahigh vacuum field-emission transmission electron microscope. Thin Solid Films 319, 110–114 (1998)

    Article  ADS  Google Scholar 

  29. A. Agrawal, J. Cizeron, V.L. Colvin, In situ high-temperature transmission electron microscopy observation of the formation of nanocrystalline TiC from nanocrystalline anatase (TiO2). Microsc. Microanal. 4, 269–277 (1998)

    Article  ADS  Google Scholar 

  30. J. Rankin, B.W. Sheldon, In situ TEM sintering of nano-sized ZrO2 particles. Mater. Sci. Eng. A 204, 48–53 (1995)

    Article  Google Scholar 

  31. M.R. MacCartney, D.J. Smith, Studies of electron irradiation and annealing effects on TiO2 surfaces in ultrahigh vacuum using high-resolution electron microscopy. Surf. Sci. 250, 169–178 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miyoko Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, M. Ion- and electron-beam-induced structural changes in cubic yttria-stabilized zirconia. Appl. Phys. A 124, 647 (2018). https://doi.org/10.1007/s00339-018-2074-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2074-7

Navigation