FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2


In this work, six glass samples with nominal compositions (35Li2O–10ZnO–55B2O3) + (xSnO2: 0 ≤ x ≤ 3 wt%) have been prepared by solid state reaction method. Spectra of UV–visible absorption for these glasses have been performed in wavelength within the range 200–1100 nm. FTIR has been recorded in the range of 4000–400 cm−1 to estimate the vibrational modes in the samples. The direct and indirect optical energy band gap (\(E_{{\text{g}}}^{{{\text{ASF}}}}\)) and the corresponding refractive index (n) have been calculated by absorption spectrum fitting model. Molar refraction (Rm), polarizability (αm), reflection loss (RL), and optical transmission (T) for the glass samples have been evaluated. Moreover, the mass attenuation coefficients (µ/ρ) have been evaluated using the Monte Carlo code (MCNPX, version 2.6.0) in the energy range 0.356–1.33 MeV to understand the radiation shielding properties for the prepared glasses. From the µ/ρ values, we have calculated some other parameters such as effective atomic number (Zeff), the half value layer, and the mean free path for the present glass samples. The results revealed that the investigated glass samples are promising for the laser stimulated nonlinear optics and the composition with the highest value of SnO2 content (3.0 wt%) is encouraging candidate for nuclear radiation shielding.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    N. Chanthima, J. Kaewkhao, Investigation on radiation shielding parameters of bismuth borosilicate, glass from 1 keV to 100 GeV. Ann. Nucl. Energy 55, 23–28 (2013)

    Article  Google Scholar 

  2. 2.

    M. Jalali, A. Mohammadi, Gamma ray attenuation coefficient measurement for neutron-absorbent materials. Radiat. Phys. Chem. 77, 523–527 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    S. Ruengsri, Radiation shielding properties comparison of Pb-based silicate, borate, and phosphate glass matrices. Sci. Technol. Nucl. Install. 2014 (2014) (Article ID 218041)

    Article  Google Scholar 

  4. 4.

    A. El-Sayed, M.A. Waly, M.A. Fusco, Bourham, Impact of specialty glass and concrete on gamma shielding in multi-layered PWR dry casks. Prog. Nucl. Energy 94, 64–70 (2017)

    Article  Google Scholar 

  5. 5.

    A. El-Sayed, M.A. Waly, M.A. Fusco, Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 96, 26–30 (2016)

    Article  Google Scholar 

  6. 6.

    S.R. Manohara, S.M. Hanagodimath, L. Gerward, K.C. Mittal, Exposure buildup factor for heavy metal oxide glasses: a radiation shield. J. Korea Phys. Soc. 59, 2039–2042 (2011)

    ADS  Article  Google Scholar 

  7. 7.

    K. Kirdsiri, J. Kaewkhao, N. Chanthima, P. Limsuwan, Comparative study of silicate glass of Bi2O3, PbO and BaO containing: radiation shielding and optical properties. Ann. Nucl. Energy 38, 1438–1441 (2011)

    Article  Google Scholar 

  8. 8.

    K. Singh, H. Singh, V. Sharma, R. Nathuram, A. Khanna, R. Kumar, S.S. Bharri, H.S. Sahora, Gamma-ray attenuation coefficient in bismuth borate glass. J. Nucl. Instrum. Methods Phys. Res. B 194, 1–6 (2002)

    ADS  Article  Google Scholar 

  9. 9.

    J. Gallup, A. Dingwall, Properties of low-temperature solder glasses. J. Am. Ceram. Soc. Bull. 36, 47–51 (1957)

    Google Scholar 

  10. 10.

    N. Shenkai, R.C. Bradt, G.E. Rindone, Elastic modulus and fracture toughness of ternary PbO–ZnO–B2O3 glasses. J. Am. Ceram. Soc. 65, 123–126 (1982)

    Article  Google Scholar 

  11. 11.

    M.I. Sayyed, Investigation of shielding parameters for smart polymers. Chin. J. Phys. 54, 408–415 (2016)

    Article  Google Scholar 

  12. 12.

    P. Kaur, D. Singh, T. Singh, Heavy metal oxide glasses as gamma rays shielding material. Nucl. Eng. Des. 307, 364–376 (2016)

    Article  Google Scholar 

  13. 13.

    A.S. Abouhaswa, Y.S. Rammah, S.E. Ibrahim, A.A. El-Hamalawy, Structural, optical, and electrical characterization of borate glasses doped with SnO2. J. Non Cryst. Solids 494, 59–65 (2018)

    ADS  Article  Google Scholar 

  14. 14.

    M. Pal, B. Roy, M. Pal, Structural characterization of borate glasses containing zinc and manganese oxides. J. Mod. Phys. 2, 1062–1066 (2011)

    Article  Google Scholar 

  15. 15.

    C. Gautam, A.K. Yadav, A.K. Singh, A review on infrared spectroscopy of borate glasses with effects of different additives. ISRN Ceram. 2012, 1–17 (2012) (Article ID 428497)

    Article  Google Scholar 

  16. 16.

    T.A. Taha, A.S. Abouhaswa, Preparation and optical properties of borate glass doped with MnO2. J. Mater. Sci. 29, 8100–8106 (2018)

    Google Scholar 

  17. 17.

    N.F. Mott, E.A. Davies, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  18. 18.

    J. Tauc, in Amorphous and Liquid Semiconductors, ed. by J. Tauc (Plenum Press, New York, 1974)

    Google Scholar 

  19. 19.

    L.E. Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rudil, E.V. Santiago, An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films. Appl. Surf. Sci. 254, 412–415 (2007)

    ADS  Article  Google Scholar 

  20. 20.

    D. Souri, K. Shomalian, Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60-x) V2O5–40TeO2xSb2O3 glasses. J. Non-Cryst. Solids 355, 1597–1601 (2009)

    ADS  Article  Google Scholar 

  21. 21.

    H. Haydar Aboud, I. Wagiran, R. Hossain, S. Hussin, M. Saber, Aziz, Effect of co-doped SnO2 nanoparticles on the optical properties of Cu-doped lithium potassium borate glass. Mater. Lett. 85, 21–24 (2012)

    Article  Google Scholar 

  22. 22.

    V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 79, 1736–1740 (1996)

    ADS  Article  Google Scholar 

  23. 23.

    R. El-Mallawany, M. Dirar Abdalla, I. Abbas Ahmed, New tellurite glasses, optical properties. Mater. Chem. Phys. 109, 291–296 (2008)

    Article  Google Scholar 

  24. 24.

    E.A. Moelwyn-Hughes, Physical Chemistry. Pergamon, London, 1961

    Google Scholar 

  25. 25.

    R. El-Mallawany, Optical properties of tellurite glasses. J. App. Phys. 72, 1774–1777 (1992)

    ADS  Article  Google Scholar 

  26. 26.

    H. Rawson, Properties and Applications of Glass (Elsevier, Amsterdam, 1980)

    Google Scholar 

  27. 27.

    M.N. Azlan, M.K. Halimah, S.Z. Shafinas, W.M. Daud, Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. Mater. Express. 5, 211–218 (2015)

    Article  Google Scholar 

  28. 28.

    I.V. Kityk, A. Majchrowski, Second-order non-linear optical effects in BiB3O6 glass fibers. Opt. Mater. 26, 33–37 (2004)

    ADS  Article  Google Scholar 

  29. 29.

    Ashok, Kumar, Gamma ray shielding properties of PbO–Li2O–B2O3 glasses. Radiat. Phys. Chem. 136, 50–53 (2017)

    ADS  Article  Google Scholar 

  30. 30.

    RSICC Computer Code Collection, MCNPX User’s Manual Version 2.4.0. Monte Carlo N-Particle Transport Code System for Multiple and High Energy Applications (2002)

  31. 31.

    M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, K. Zucker, D.S. Olsen, XCOM: Photon Cross Sections Database, NIST Standard Reference Database (XGAM) (2010). http://www.nist.gov/pml/data/xcom/index.cfm

  32. 32.

    H.O. Tekin, V.P. Singh, T. Manici, Effects of micro-sized and nano-sized WO3 on mass attenuation coefficients of concrete by using MCNPX code. Appl. Radiat. Isot. 121, 122–125 (2017)

    Article  Google Scholar 

  33. 33.

    O. Huseyin, M.I. Tekin, T. Sayyed, Manici, Elif Ebru Altunsoy, Photon shielding characterizations of bismuth modified borate–silicate–tellurite glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. 211, 9–16 (2018)

    Article  Google Scholar 

  34. 34.

    V.P. Singh, S.P. Shirmardi, M.E. Medhat, N.M. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum 119, 284–288 (2015)

    ADS  Article  Google Scholar 

  35. 35.

    M.I. Sayyed, M.G. Dong, H.O. Tekin, G. Lakshminarayana, M.A. Mahdi. Comparative investigations of gamma and neutron radiation shielding parameters for different borate and tellurite glass systems using WinXCom program and MCNPX code. Mater. Chem. Phys. https://doi.org/10.1016/j.matchemphys.2018.04.106

    Article  Google Scholar 

  36. 36.

    Shamsan.S.Obaid,M.I.Sayyed,D.K.Gaikwad, P.P. Pawar. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94 (2018)

    Article  Google Scholar 

  37. 37.

    Murat, Kurudirek, Heavy metal borate glasses: potential use for radiation shielding. J. Alloy. Compd. 727, 1227–1236 (2017)

    Article  Google Scholar 

  38. 38.

    M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloy. Compd. 745, 355–364 (2018)

    Article  Google Scholar 

  39. 39.

    M.I. Sayyed, Çelikbilek A.E. Ersundu, G. Ersundu, P. Lakshminarayana, Kostka, Investigation of radiation shielding properties for MeO–PbCl2–TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses. Radiat. Phys. Chem. 144, 419–425 (2018)

    ADS  Article  Google Scholar 

  40. 40.

    M.I. Sayyed, M.Y. AlZaatreh, M.G. Dong, M.H.M. Zaid, K.A. Matori, H.O. Tekin, A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding. Res. Phys. 7, 2528–2533 (2017)

    Google Scholar 

  41. 41.

    P.P. Pawar, K.G. Bichile, Studies on mass attenuation coefficient, effective atomic number and electron density of some amino acids in the energy range 0.122–1.330 MeV. Radiat. Phys. Chem. 92, 22–27 (2013)

    ADS  Article  Google Scholar 

  42. 42.

    M. Papachristoforou, I. Papayianni, Radiation shielding and mechanical properties of steel fiber reinforced concrete (SFRC) produced with EAF slag aggregates. Radiat. Phys. Chem. 149, 26–32 (2018)

    ADS  Article  Google Scholar 

  43. 43.

    D.K. Gaikwad, S.S. Obaid, M.I. Sayyed, R.R. Bhosale, V.V. Awasarmol, A. Kumar, M.D. Shirsat, P.P. Pawar, Comparative study of gamma ray shielding competence of WO3–TeO2–PbO glass system to different glasses and concretes. Mater. Chem. Phys. 213, 508–517 (2018)

    Article  Google Scholar 

  44. 44.

    D.K. Gaikwad, P.P. Pawar, T.P. Selvam, Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions. Radiat. Phys. Chem. 138, 75–80 (2017)

    ADS  Article  Google Scholar 

  45. 45.

    C.V. More, R.M. Lokhande, P.P. Pawar, Effective atomic number and electron density of amino acids within the energy range of 0.122–1.330 MeV. Radiat. Phys. Chem. 125, 14–20 (2016)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Y. S. Rammah.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rammah, Y.S., Sayyed, M.I., Abohaswa, A.S. et al. FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A 124, 650 (2018). https://doi.org/10.1007/s00339-018-2069-4

Download citation