Skip to main content
Log in

Forming and defect analysis for single track scanning in selective laser melting of Ti6Al4V

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) is one of the most promising additive manufacturing (AM) processes. Each single track in SLM may affect the forming defects and the resultant relative density of final SLM parts. A three-dimensional randomly distributed powder bed model of Ti6Al4V was established to study the forming process of single track. The numerical model is verified by experimental tests. The numerical results show that—the typical metallurgical defects associated with SLM such as balling effect is significantly affected by line energy density (LED). The optimal LED range is given by numerical and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Berman, 3-D printing: the new industrial revolution. Bus. Horizons. 55, 155–162 (2012)

    Article  Google Scholar 

  2. J.P. Kruth, L. Froyen, J.V. Vaerenbergh et al., Selective laser melting of iron-based powder. J. Mater. Process. Technol. 149(1), 616–622 (2004)

    Article  Google Scholar 

  3. D.D. Gu, W. Meiners, K. Wissenbach et al., Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2012)

    Article  Google Scholar 

  4. F. Calignano, D. Manfredi, E.P. Ambrosio et al., Direct fabrication of joints based on direct metal laser sintering in aluminum and titanium alloys. Proc. CIRP. 21, 129–132 (2014)

    Article  Google Scholar 

  5. S. Das, Physical aspects of process control in selective laser sintering of metals. Adv. Eng. Mater. 5(10), 701–711 (2003)

    Article  Google Scholar 

  6. P. Yuan, D.D. Gu, D.H. Dai, Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites. Mater. Des. 82(5), 46–55 (2015)

    Article  Google Scholar 

  7. A. Simchi, Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater. Sci. Eng. A. 428(1–2), 148–158 (2006)

    Article  Google Scholar 

  8. A. Yadroitsev, I. Gusarov, Yadroitsava et al., Single track formation in selective laser melting of metal powders. J. Mater. Process. Technol. 210(12), 1624–1631 (2010)

    Article  Google Scholar 

  9. Y.J. Shi, H. Shen, Z.Q. Yao et al., An analytical model based on the similarity in temperature distributions in laser forming. Opt. Lasers Eng. 45(1), 83–87 (2007)

    Article  Google Scholar 

  10. Z. Chen, Y. Xiang, Z.Y. Wei et al., Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification. Appl. Phys. A. 124(4), 313 (2018)

    Article  ADS  Google Scholar 

  11. K. Zeng, D. Pal, A review of thermal analysis methods in laser sintering and selective laser melting, in: Proceedings of Solid Freeform Fabrication Symposium. 23, 796–814 (2012)

  12. P. Wei, Z.Y. Wei, Z. Chen et al., The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior. Appl. Surf. Sci. 408(30), 38–50 (2017)

    Article  ADS  Google Scholar 

  13. C. Meier, R.W. Penny, Z. Yu et al., Thermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling. simulation and experimentation (2017). https://arxiv.org/abs/1709.09510

  14. W.J. Sames, F.A. List, S. Pannala et al., The metallurgy and pro-cessing science of metal additive manufacturing. Int. Mater. Rev. 6608, 1–46 (2016)

    Google Scholar 

  15. W.E. King, A.T. Anderson, R.M. Ferencz et al., Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl. Phys. Rev. 2(4), 44–6210 (2015)

    Article  Google Scholar 

  16. C. Körner, E. Attar, P. Heinl, Mesoscopic simulation of selective beam melting processes. J. Mater. Process. Technol. 211(6), 978–987 (2011)

    Article  Google Scholar 

  17. G.B.M. Cervera, G. Lombera, Numerical prediction of temperature and density distributions in selective laser sintering processes. Rapid. Prototyping. J. 5(1), 12–26 (1999)

    Article  Google Scholar 

  18. S. Kolossov, E. Boillat, R. Glardon et al., 3D FE simulation for temperature evolution in the selective laser sintering process. Int. J. Mach. Tools Manuf. 44(2), 117–123 (2004)

    Article  Google Scholar 

  19. A. Hussein, L. Hao, C. Yan et al., Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater. Des. 52(24), 638–647 (2013)

    Article  Google Scholar 

  20. A. Almangour, D. Grzesiak, J. Cheng et al., Thermal behavior of the molten pool, microstructural evolution, and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites: Experimental and simulation methods. J. Mater. Process. Technol. 257, 288–301 (2018)

    Article  Google Scholar 

  21. Y. Li, D. Gu, Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des. 63(2), 856–867 (2014)

    Article  Google Scholar 

  22. Y. Li, D. Gu, Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study. Addit. Manuf. 1(4), 99–109 (2014)

    Article  Google Scholar 

  23. Q. Shi, D. Gu, M. Xia et al., Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt. Laser Technol. 84, 9–22 (2016)

    Article  ADS  Google Scholar 

  24. D. Dai, D. Gu, Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments. Mater. Des. 55(6), 482–491 (2014)

    Article  Google Scholar 

  25. M.J. Xia, D.D. Gu, G.Q. Yu et al., Selective laser melting 3D printing of Ni-based superalloy: understanding thermodynamic mechanisms. Chin. Sci. Bull. 61(13), 1013–1022 (2016)

    Google Scholar 

  26. S.A. Khairallah, A.T. Anderson, A. Rubenchik et al., Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36–45 (2016)

    Article  Google Scholar 

  27. C. Chiumenti, E. Neiva, E. Salsi et al., Numerical modelling and experimental validation in selective laser melting. Addit Manuf. 18, 171–185 (2017)

    Article  Google Scholar 

  28. B. Song, S. Dong, H. Liao et al., Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering. Int. J. Adv. Manuf. Technol. 61, 967–974 (2012)

    Article  Google Scholar 

  29. J.N. Roux, Geometric origin of mechanical properties of granular materials. Phys. Rev. E 61(6), 6802 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  30. G. Rong, G. Liu, D. Hou, C. Zhou, Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model, Sci. World J. 2013(7), 289215–589215 (2013)

  31. P. Wei, Z. Wei, Z. Chen et al., Thermal behavior in single track during selective laser melting of AlSi10Mg powder. Appl. Phys. A. 123(9), 604 (2017)

    Article  ADS  Google Scholar 

  32. P. Wei, Z. Wei, Z. Chen et al., Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder. Appl. Phys. A. 123(8), 540 (2017)

    Article  ADS  Google Scholar 

  33. Y. Lee, W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit. Manuf. 12, 178–188 (2016)

    Article  Google Scholar 

  34. A. Masmoudi, C. Bolot, Coddet, Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process. J. Mater. Process. Technol. 225, 122–132 (2015)

    Article  Google Scholar 

  35. C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  ADS  Google Scholar 

  36. D. Dai, D. Gu, Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites. Int. J. Mach. Tools Manuf. 100, 14–24 (2016)

    Article  Google Scholar 

  37. S. Rubenchik, S. Wu, I. Mitchell, M. Golosker, N. Leblanc, Peterson, Direct measurements of temperature-dependent laser absorptivity of metal powders. Appl. Opt. 54(24), 7230 (2015)

    Article  ADS  Google Scholar 

  38. K.C. Mills, Recommended values of thermos physical properties for selected commercial alloys. Woodhead Publishing. 205–210 (2002)

  39. K. Dai, L. Shaw, Finite element analysis of the effect of volume shrinkage during laser densification. Acta Mater. 53(18), 4743–4754 (2005)

    Article  Google Scholar 

  40. V. Semak, A. Matsunawa, The role of recoil pressure in energy balance during laser materials processing. J. Phys. D: Appl. Phys. 30(18), 2541 (1999)

    Article  ADS  Google Scholar 

  41. V.R. Voller, C. Prakash, A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int. J. Heat Mass Transf. 30(8), 1709–1719 (1987)

    Article  Google Scholar 

  42. H.C. Min, C.L. Yong, D. Farson, Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and inal weld shape. Weld. J. 85(12), 271–283 (2006)

    Google Scholar 

  43. B. Masmoudi, R. Bolot, C. Coddet, Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process. J. Mater. Process. Technol. 225, 122–132 (2015)

    Article  Google Scholar 

  44. A.V. Gusarov, I. Smurov, Modeling the interaction of laser radiation with powder bed at selective laser melting. Physics Procedia. 5, 381–394 (2010)

    Article  ADS  Google Scholar 

  45. E. Attar, C. Körner, Lattice Boltzmann model for thermal free surface lows with liquid–solid phase transition. Int. J. Heat Fluid Flow 32(1), 156–163 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by Science Challenge Project TZ2018006-0301-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengying Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Y., Zhang, S., Wei, Z. et al. Forming and defect analysis for single track scanning in selective laser melting of Ti6Al4V. Appl. Phys. A 124, 685 (2018). https://doi.org/10.1007/s00339-018-2056-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2056-9

Navigation