Skip to main content
Log in

Ultra-wideband and high-efficiency transparent coding metasurface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we propose a new way to control the transparent far-field beam by varying coded sequence combinations based on transparent coding metasurface. As an example, an ultra-wideband and high-efficiency transparent coding metasurface is designed and measured. By elaborately arranging the coding sequences of coding meta-atoms to 1-bit, 2-bit, and 3-bit, with the transparent coding metasurface, can achieve two and four transparent far-field beam splitting and abnormal beam deflection when the EM wave is oblique incidence on the metasurface. The experimental results agree well with the numerical simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  ADS  Google Scholar 

  2. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. Y. Li, J. Zhang, S. Qu et al., Wideband selective polarization conversion mediated by three-dimensional metamaterials. J. Appl. Phys. 115, 234506 (2014)

    Article  ADS  Google Scholar 

  4. Q. Zheng, Y. Li, Y. Pang et al., Three dimensional dual-band phase gradient metamaterial based on Pancharatnam-Berry phase. J. Appl. Phys. 122, 063106 (2017)

    Article  ADS  Google Scholar 

  5. J.B. Pendry, A.J. Holden, D.J. Robbins et al., Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Article  ADS  Google Scholar 

  6. N. Yu, P. Genevet, M.A. Kats et al., Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  ADS  Google Scholar 

  7. Y. Li, J. Zhang, S. Qu et al., Achieving wideband polarization-independent anomalous reflection for linearly polarized waves with dispersionless phase gradient metasurfaces. J. Phys. D Appl. Phys. 47, 425103 (2014)

    Article  Google Scholar 

  8. Y. Li, J. Zhang, S. Qu et al., Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces. J. Appl. Phys. 117, 044501 (2015)

    Article  ADS  Google Scholar 

  9. H. Zhu, F. Semperlotti, Anomalous refraction of acoustic guided waves in solids with geometrically tapered metasurfaces. Phys. Rev. Lett. 117, 034302 (2016)

    Article  ADS  Google Scholar 

  10. J. Wang, S. Qu, H. Ma et al., High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces. Appl. Phys. Lett. 101, 201104 (2012)

    Article  ADS  Google Scholar 

  11. Y.F. Yu, A.Y. Zhu, R. Paniagua-Domínguez et al., High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev. 9, 412–418 (2015)

    Article  ADS  Google Scholar 

  12. L. Wang, S. Kruk, H. Tang et al., Grayscale transparent metasurface holograms. Optica 3, 1504–1505 (2016)

    Article  Google Scholar 

  13. Y. Li, J. Zhang, S. Qu et al., Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces. Appl. Phys. Lett. 104, 221110 (2014)

    Article  ADS  Google Scholar 

  14. Y. Han, J. Zhang, Y. Li et al., Miniaturized-element offset-feed planar reflector antennas based on metasurfaces. IEEE Antennas. Wirel. Propag. Lett. 16, 282–285 (2017)

    Article  ADS  Google Scholar 

  15. H.X. Xu, G.M. Wang, J.G. Liang et al., Compact circularly polarized antennas combining meta-surfaces and strong space-filling meta-resonators. IEEE Trans. Antennas Propag. 61, 3442–3450 (2013)

    Article  ADS  Google Scholar 

  16. X. Wan, X. Shen, Y. Luo et al., Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface. Laser Photonics Rev. 8, 757–765 (2014)

    Article  ADS  Google Scholar 

  17. Z. Li, I. Kim, L. Zhang et al., Dielectric meta-holograms enabled with dual magnetic resonances in visible light. ACS Nano 11, 9382–9389 (2017)

    Article  Google Scholar 

  18. T.J. Cui, M.Q. Qi, X. Wan et al., Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014)

    Article  Google Scholar 

  19. C.L. Holloway, E.F. Kuester, J.A. Gordon et al., An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. M. 54, 10–35 (2012)

    Article  ADS  Google Scholar 

  20. T.J. Cui, S. Liu, L.L. Li, Information entropy of coding metasurface. Light Sci. Appl. 5, e16172 (2016)

    Article  Google Scholar 

  21. C. Huang, B. Sun, W. Pan et al., Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface. Sci. Rep. 7, 42302 (2017)

    Article  ADS  Google Scholar 

  22. B. Xie, H. Cheng, K. Tang et al., Multiband asymmetric transmission of airborne sound by coded metasurfaces. Phys. Rev. Appl. 7, 024010 (2017)

    Article  ADS  Google Scholar 

  23. T.J. Cui, S. Liu, L. Zhang, Information metamaterials and metasurfaces. J. Mater. Chem. C 5, 3644–3668 (2017)

    Article  Google Scholar 

  24. S. Liu, T.J. Cui, Concepts, working principles, and applications of coding and programmable metamaterials. Adv. Opt. Mater. 5, 1700624 (2017)

    Article  Google Scholar 

  25. Q. Zheng, Y. Li, J. Zhang et al., Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase. Sci. Rep. 7, 43543 (2017)

    Article  ADS  Google Scholar 

  26. X. Yan, L. Liang, J. Yang et al., Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface. Opt. Express 23, 29128–29137 (2015)

    Article  ADS  Google Scholar 

  27. Z. Shen, B. Jin, J. Zhao et al., Design of transparent coding metasurface and its application of beam forming. Appl. Phys. Lett. 109, 121103 (2016)

    Article  ADS  Google Scholar 

  28. S. Liu, A. Noor, L.L. Du et al., Anomalous refraction and nondiffractivebessel-beam generation of terahertz waves through transparent coding metasurfaces. ACS Photonics 3, 1968–1977 (2016)

    Article  Google Scholar 

  29. Y. Li, J. Zhang, S. Qu et al., Ultra-wideband, high-efficiency beam steering based on phase gradient metasurfaces. J. Electromagn. Wave 29, 2163–2170 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the supports from the National Natural Science Foundation of China under Grant Nos. 61501503, 61471388, and 61331005, and the Natural Science Foundation of Shaanxi Province under Grant No. 2017JM6005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maochang Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, M., Li, Y., Wang, J. et al. Ultra-wideband and high-efficiency transparent coding metasurface. Appl. Phys. A 124, 630 (2018). https://doi.org/10.1007/s00339-018-2048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2048-9

Navigation