Applied Physics A

, 124:609 | Cite as

Effect of defect states and oxygen vacancies on optical transitions due to Co2+ substitution in CeO2

  • Saurabh Tiwari
  • Nasima Khatun
  • Parasmani Rajput
  • Dibyendu Bhattacharya
  • S. N. Jha
  • Chuan-Ming Tseng
  • Shun-Wei Liu
  • Sajal Biring
  • Somaditya Sen


CeO2 has cubic fluorite structure which is modified due to oxygen content as well as external substituents. The oxidation state of Ce plays an important role in strain and related physical properties. Ce3+ being larger in size than the Ce4+ ion, one expects a change in band structure due to changes in bond length; substitution of Ce4+ by Co2+ in sol–gel prepared, homogeneous, single-phase Ce1−xCoxO2 (x ≤ 10) nanopowders. The lower valence states of Co2+ induces oxygen vacancies which transforms some Ce4+ to Ce3+. A careful study of oxygen vacancies, strain, bond length and related band structure changes, have been targeted in this study. The possibility of phonon participation in electronic transition has been discussed using Tauc plot. Ce3+ forms defect states, between valence and conduction bands. Lattice parameters decrease, but strain increases with substitution.



Principle investigator expresses sincere thanks to Indian Institute of Technology Indore for funding the research. The authors sincerely thank Sophisticated Instrument Centre (IIT Indore) for FESEM studies, Dr. V. K. Jain (Amity University) for UV–Vis analysis and Dr. Manoj Kumar (IISER Bhopal) for Raman studies. One of the authors (Dr. Sajal Biring) acknowledges the financial support from Ministry of Science and Technology, Taiwan (MOST 105-2218-E131-003) and (106-2221-E-131-027).


  1. 1.
    W. Deng, A.I. Frenkel, R. Si, M. Flytzani-Stephanopoulos, J. Phys. Chem. C 112, 12834 (2008)CrossRefGoogle Scholar
  2. 2.
    L. Liao, H.X. Mai, Q. Yuan, H.B. Lu, J.C. Li, C. Liu, C.H. Yan, Z.X. Shen, T. Yu, J. Phys. Chem. C 112, 9061 (2008)CrossRefGoogle Scholar
  3. 3.
    A.S. Karakoti, N.A. Monteiro-Riviere, R. Aggarwal, J.P. Davis, R.J. Narayan, W.T. Self, J. McGinnis, S. Seal, JOM 60, 33 (2008)CrossRefGoogle Scholar
  4. 4.
    A. Primo, T. Marino, A. Corma, R. Molinari, H. García, J. Am. Chem. Soc. 133, 6930 (2011)CrossRefGoogle Scholar
  5. 5.
    N. Belkhir, D. Bouzid, V. Herold, J. Mater. Process. Technol. 209, 6140 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Dong, S. Hampshire, J. Zhou, G. Meng, Int. J. Hydrog. Energy 36, 5054 (2011)CrossRefGoogle Scholar
  7. 7.
    J. Yuan, W. Ma, J. Mo, J. Appl. Polym. Sci. 134, 45065 (2017)CrossRefGoogle Scholar
  8. 8.
    G. Dutta, U.V. Waghmare, T. Baidya, M.S. Hegde, K.R. Priolkar, P.R. Sarode, Chem. Mater. 18, 3249 (2006)CrossRefGoogle Scholar
  9. 9.
    S.-Y. Chen, K.-W. Fong, T.-T. Peng, C.-L. Dong, A. Gloter, D.-C. Yan, C.-L. Chen, H.-J. Lin, C.-T. Chen, J. Phys. Chem. C 116, 26570 (2012)CrossRefGoogle Scholar
  10. 10.
    D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, S. Phanichphant, Sci. Rep. 4, 5757 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    B. Xu, Q. Zhang, S. Yuan, M. Zhang, T. Ohno, Appl. Catal. B Environ. 183, 361 (2016)CrossRefGoogle Scholar
  12. 12.
    F. Abbas, J. Iqbal, T. Jan, M.S.H. Naqvi, A. Gul, R. Abbasi, A. Mahmood, I. Ahmad, M. Ismail, J. Alloys Compd. 648, 1060 (2015)CrossRefGoogle Scholar
  13. 13.
    C. Xian, S. Wang, C. Sun, H. Li, S. Chan, L. Chen, Chin. J. Catal. 34, 305 (2013)CrossRefGoogle Scholar
  14. 14.
    P. Goel, M. Arora, A.M. Biradar, RSC Adv. 4, 11351 (2014)CrossRefGoogle Scholar
  15. 15.
    V. Ramasamy, G. Vijayalakshmi, Superlattices Microstruct. 85, 510 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Mater. Chem. Phys. 115, 423 (2009)CrossRefGoogle Scholar
  17. 17.
    P. Patsalas, S. Logothetidis, L. Sygellou, S. Kennou, Phys. Rev. B 68, 035104 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Jiang, N. Bahlawane, J. Alloys Compd. 485, L52 (2009)CrossRefGoogle Scholar
  19. 19.
    S.J. Jeyakumar, T. Dhanushkodi, I.K. Punithavathy, M. Jothibas, J. Mater. Sci. Mater. Electron. 28, 3740 (2017)CrossRefGoogle Scholar
  20. 20.
    M.D. Hernández-Alonso, A.B. Hungría, A. Martínez-Arias, J.M. Coronado, J.C. Conesa, J. Soria, M. Fernández-García, Phys. Chem. Chem. Phys. 6, 3524 (2004)CrossRefGoogle Scholar
  21. 21.
    V.K. Ivanov, A.B. Shcherbakov, A.V. Usatenko, Russ. Chem. Rev. 78, 855 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    K.S. Ranjith, P. Saravanan, S.-H. Chen, C.-L. Dong, C.L. Chen, S.-Y. Chen, K. Asokan, R.T. Rajendra Kumar, J. Phys. Chem. C 118, 27039 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Tiwari, G. Bajpai, T. Srivastava, S. Viswakarma, P. Shirage, S. Sen, S. Biring, Scr. Mater. 129, 84 (2017)CrossRefGoogle Scholar
  24. 24.
    K.S. Hemalatha, K. Rukmani, N. Suriyamurthy, B.M. Nagabhushana, Mater. Res. Bull. 51, 438 (2014)CrossRefGoogle Scholar
  25. 25.
    N. Khatun, S. Tiwari, C.P. Vinod, C.-M. Tseng, S. Wei Liu, S. Biring, S. Sen, J. Appl. Phys. 123, 245702 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    R.K. Hailstone, A.G. Di Francesco, J.G. Leong, T.D. Allston, K.J. Reed, J. Phys. Chem. C 113, 15155 (2009)CrossRefGoogle Scholar
  27. 27.
    P.P. Wells, E.M. Crabb, C.R. King, S. Fiddy, A. Amieiro-Fonseca, D. Thompsett, A.E. Russell, Catal. Struct. React. 1, 88 (2015)CrossRefGoogle Scholar
  28. 28.
    S. Phokha, S. Pinitsoontorn, S. Maensiri, Nano-Micro Lett. 5, 223 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Phokha, S. Pinitsoontorn, P. Chirawatkul, Y. Poo-arporn, S. Maensiri, Nanoscale Res. Lett. 7, 425 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    S. Phokha, S. Pinitsoontorn, S. Maensiri, J. Appl. Phys. 112, 113904 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    J.E. Spanier, R.D. Robinson, F. Zhang, S.-W. Chan, I.P. Herman, Phys. Rev. B 64, 245407 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    G.-R. Li, D.-L. Qu, L. Arurault, Y.-X. Tong, J. Phys. Chem. C 113, 1235 (2009)CrossRefGoogle Scholar
  33. 33.
    W.H. Weber, K.C. Hass, J.R. McBride, Phys. Rev. B 48, 178 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P.L. Anderson, S. Seraphin, Cryst. Growth Des. 7, 950 (2007)CrossRefGoogle Scholar
  35. 35.
    R. Kumar, G. Sahu, S.K. Saxena, H.M. Rai, P.R. Sagdeo, Silicon 6, 117 (2014)CrossRefGoogle Scholar
  36. 36.
    P. Yogi, D. Poonia, S. Mishra, S.K. Saxena, S. Roy, V. Kumar, P.R. Sagdeo, R. Kumar, J. Phys. Chem. C 121, 5372 (2017)CrossRefGoogle Scholar
  37. 37.
    Y.-W. Zhang, R. Si, C.-S. Liao, C.-H. Yan, C.-X. Xiao, Y. Kou, J. Phys. Chem. B 107, 10159 (2003)CrossRefGoogle Scholar
  38. 38.
    C. Schilling, A. Hofmann, C. Hess, M.V. Ganduglia-Pirovano, J. Phys. Chem. C 121, 20834 (2017)CrossRefGoogle Scholar
  39. 39.
    D. Avisar, T. Livneh, Vib. Spectrosc. 86, 14 (2016)CrossRefGoogle Scholar
  40. 40.
    S. Tiwari, G. Rathore, N. Patra, A.K. Yadav, D. Bhattacharya, S.N. Jha, C.M. Tseng, S.W. Liu, S. Biring, S. Sen, Condens. Matter Mater. Sci. (2018). arXiv:1807.02417
  41. 41.
    M. Guo, J. Lu, Y. Wu, Y. Wang, M. Luo, Langmuir 27, 3872 (2011)CrossRefGoogle Scholar
  42. 42.
    M.I.B. Bernardi, A. Mesquita, F. Béron, K.R. Pirota, A.O. de Zevallos, A.C. Doriguetto, H.B. de Carvalho, Phys. Chem. Chem. Phys. 17, 3072 (2015)CrossRefGoogle Scholar
  43. 43.
    Z.V. Popović, Z.D. Dohčević-Mitrović, N. Paunović, M. Radović, Phys. Rev. B 85, 014302 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    V. Mishra, A. Sagdeo, V. Kumar, M.K. Warshi, H.M. Rai, S.K. Saxena, D.R. Roy, V. Mishra, R. Kumar, P.R. Sagdeo, J. Appl. Phys. 122, 065105 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    T. Srivastava, S. Kumar, P. Shirage, S. Sen, Scr. Mater. 124, 11 (2016)CrossRefGoogle Scholar
  46. 46.
    P. Singh, I. Choudhuri, H.M. Rai, V. Mishra, R. Kumar, B. Pathak, A. Sagdeo, P.R. Sagdeo, RSC Adv. 6, 100230 (2016)CrossRefGoogle Scholar
  47. 47.
    A.M. Smith, S. Nie, Acc. Chem. Res. 43, 190 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Metallurgy Engineering and Material SciencesIndian Institute of Technology IndoreIndoreIndia
  2. 2.Department of PhysicsIndian Institute of Technology IndoreIndoreIndia
  3. 3.Atomic and Molecular Physics Division Bhabha Atomic Research CentreMumbaiIndia
  4. 4.Materials EngineeringMing Chi University of TechnologyNew Taipei CityTaiwan
  5. 5.Electronic EngineeringMing Chi University of TechnologyNew Taipei CityTaiwan

Personalised recommendations