Skip to main content
Log in

Hybrid UV laser direct writing of UV-curable PDMS thin film using aerosol jet printing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polydimethylsiloxane (PDMS) is widely used for bio-medical, optical and microfluidic applications. Hence, PDMS layers on free-form surfaces on defined areas are needed. Conventional ways such as spin coating show drawbacks by long processing time and no sufficient application on free form surfaces. In this work, laser direct writing with UV-curable PDMS on a curved surface was performed. The coating technique using aerosol jet printing showed thin film thicknesses, compared to conventional spin coating techniques, obtaining controllable layer thickness down to 3.5 µm in 5 min on an area of 600 mm2 and on non-flat surfaces. Deposition rate control achieved layer thicknesses between 3.5 and 25.7 µm. The combination of material deposition and x–y galvanometric mirror scanner-based laser direct writing leads to a hybrid approach aiming for several applications in the fields of surface functionalization, and bio-medical and sensory applications. In addition, the procedure is able to overcome the batch-based PDMS processing and introduce the continuous flow-based application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Schneider, J. Draheim, R. Kamberger, U. Wallrabe, Sens. Actuators, A 151, 95 (2009)

    Article  Google Scholar 

  2. M. Unger, H. Chou, T. Thorsen, A. Scherer, S. Quake, Science 288, 113 (2000)

    Article  ADS  Google Scholar 

  3. M. Takai, T. Shirai, K. Ishihara, J Photopolym Sci Tec 24(5), 597 (2011)

    Article  Google Scholar 

  4. B. Lin, Y. Yang, C. Ho, H. Yang, H. Wang, Sensors 14(14), 2967 (2014)

    Article  Google Scholar 

  5. D.C. Duffy, J. Cooper, O.J.A. McDonald, G.M. Schueller, Whitesides, Anal. Chem. 70, 4974 (1998)

    Article  Google Scholar 

  6. J.W. Park, B. Vahidi, A.M. Taylor, S.W. Rhee, N.L. Jeon, Nat. Prot. 1(4), 2128 (2006)

    Article  Google Scholar 

  7. A. Werber, H. Zappe, Appl. Opt. 44(16), 3238 (2005)

    Article  ADS  Google Scholar 

  8. N. Ishikawa, Y. Hanada, I. Ishikawa, K. Sugioka, K. Midorikawa, Appl. Phys. B 119, 503 (2015)

    Article  ADS  Google Scholar 

  9. P. Zuo, X.J. Li, D.C. Dominguez, B.C. Ye, Lab Chip. 13(19), 3921 (2013)

    Article  Google Scholar 

  10. L. He, Y.F. Xiao, C. Dong, J. Zhu, V. Gaddam, L. Yang, Appl. Phys. Lett. 93, 201102–201101 (2008)

    Article  ADS  Google Scholar 

  11. D.X. Lu, Y.L. Zhang, D.D. Han, H. Wang, H. Xia, Q.D. Chen, H. Ding, H.B. Sun, J. Mater. Chem. C 3, 1751 (2015)

    Article  Google Scholar 

  12. K. Tsougeni, A. Tserepi, E. Gogolides, Microelectron Eng. 84, 1104 (2007)

    Article  Google Scholar 

  13. R. Ramji, N. Khan, A. Munoz-Rojas, K. Miller-Jensen, RSC Adv. 5(81), 66294 (2015)

    Article  Google Scholar 

  14. A.A. Epshteyn, S. Maher, A.J. Taylor, A.B. Holton, J.T. Borenstein, J.D. Cuiffi, Biomicrofluidics 5, 046501–046501 (2011)

    Article  Google Scholar 

  15. D. Caputo, G. de Cesare, N.L. Vecchio, A. Nascetti, E. Parisi, R. Scipinotti, Microelectronics J. 45, 1684 (2014)

    Article  Google Scholar 

  16. K. Obata, A. Schonewille, S. Slobin, A. Hohnholz, C. Unger, J. Koch, O. Suttmann, L. Overmeyer, Appl. Phys. Lett. 111, 121903 (2017)

    Article  ADS  Google Scholar 

  17. J. Koschwanez, R. Carlson, D. Meldrum, PLoS One 4(2), e4572 (2009)

    Article  ADS  Google Scholar 

  18. B.E. Kahn, OPE 1(2), 14 (2007)

    MathSciNet  Google Scholar 

  19. B.H. King, M.J. O’Reilly, S.M. Barnes, in Proceedings of 34th IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia, 2009

  20. J.A. Paulsen, M. Renn, K. Christenson, R. Plourde, in Proceedings of Future of Instrumentation International Workshop 2012, Tennessee, 2012

  21. T. Fujii, MEE 61–62, 907 (2002)

    Google Scholar 

  22. C.L. Sones, I.N. Katis, B. Mills, M. Feinaeugle, A. Mosayyebi, J. Butement, R.W. Eason, Appl. Surf. Sci. 298, 125 (2014)

    Article  ADS  Google Scholar 

  23. M.B. Kant, S.D. Shinde, D. Bodas, K.R. Patil, V.G. Sathe, K.P. Adhi, S.W. Gosavi, Appl. Surf. Sc. 314, 292 (2014)

    Article  ADS  Google Scholar 

  24. T. Scharnweber, R. Truckenmuller, A.M. Schneider, A. Welle, M. Reinhardt, S. Giselbrecht, Lab Chip 11, 1368 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shin-Etsu Silicones Europe B.V. for providing the PDMS sample. The authors also would like to thank Patrick Rößler for experimental support. This research was supported as part of joint research projects by “Projektbezogener Personenaustausch mit Japan” (DAAD-JSPS) Joint Research Program (Project No. 57245147). The authors acknowledge financial support in the frame of the 3D-PolySPRINT Project (BMBF FKZ 13N13567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arndt Hohnholz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hohnholz, A., Obata, K., Nakajima, Y. et al. Hybrid UV laser direct writing of UV-curable PDMS thin film using aerosol jet printing. Appl. Phys. A 125, 120 (2019). https://doi.org/10.1007/s00339-018-1902-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1902-0

Navigation