Advertisement

Applied Physics A

, 124:491 | Cite as

Reinforcement of polyaniline and poly-(o-toluidine) with SWNTs and tuning of their physicochemical properties by heavy ion beams

  • Harshada K. Patil
  • Megha A. Deshmukh
  • Gajanan A. Bodkhe
  • Sumedh M. Shirsat
  • K. Asokan
  • Mahendra D. Shirsat
Article
  • 60 Downloads

Abstract

In the present investigation, the organic conducting polymers (OCP) were reinforced with single-walled carbon nanotubes (SWNTs) through non-covalent interaction. The polyaniline/SWNTs and poly-(o-toluidine)/SWNTs composites were synthesized electrochemically, and the effects of the Swift heavy ions (SHI) irradiation of 100 MeV oxygen ions beam and 55 MeV carbon ions beam at various ion fluences were investigated, respectively. The spectroscopic and morphological studies were carried out using ultraviolet–visible spectroscopy, Fourier transformed infrared spectroscopy, Raman spectroscopy, and field-emission scanning electron microscopy respectively. Attempts have been made to reveal the influence of high-energy ion irradiation on composites which are highly sensitive and possess characteristics role in tuning of various properties. The facile approach indicates that the SHI irradiation can be adopted to enhance various functionalities of the OCPs reinforced with the SWNTs.

Notes

Acknowledgements

Authors extend their sincere thanks to Inter University Accelerator Centre (IUAC), New Delhi, India (UFR no. 55305) and DST, SERB, New Delhi (Project no.: SB/ EMEQ-042/2013), Rashtria Uchachatar Shiksha Abhiyan (RUSA), Government of Maharashtra, UGC-DAE-CSR–RRCAT Indore (Project no.: CSR-IC-BL66/CRS-183/2016-17/847), UGC-SAP Programme (F.530/16/DRS-I/2016(SAP-II) Dt. 16-04-2016) for providing financial support.

References

  1. 1.
    N. Hyeonseok Yoon, Nanomaterials, 3, 524–549 (2013)CrossRefGoogle Scholar
  2. 2.
    M.D. Shirsat, M.A. Bangar, M.A. Deshusses, N.V. Myung, A. Mulchandani, Appl. Phys. Lett. 94, 083502 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    K. Datta, P. Ghosh, M.A. More, M.D. Shirsat, A. Mulchandani, J Phys D,  https://doi.org/10.1088/0022-3727/45/35/355305
  4. 4.
    A. Sumedh Gaikwad, Y.-H. Rushi, M. Kim, H. Deshmukh, G. Patil, M.D. Bodkhe, A. Shirsat, P. Koinkar, A. Mulchandani, Mod. Phys. Lett. B 29, 1540046 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Janata, M. Josowicz, Nat. Mater. 2, 19–24 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    U. Lange, N.V. Roznyatovskaya, V.M. Mirsky, Anal. Chim. Acta 614, 1–26 (2008)CrossRefGoogle Scholar
  7. 7.
    Z.F. Li, F.D. Blum, M.F. Bertino, C.S. Kim, Sens. Actuators B. 183, 419–427 (2013)CrossRefGoogle Scholar
  8. 8.
    T. Rajesh, D. Ahuja, Kumar, Sens. Actuators B. 136, 275–286 (2009)CrossRefGoogle Scholar
  9. 9.
    P. Kar, A. Choudhury, Sens. Actuators B. 183, 25–33 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Xu, P. Yao, X. Li, F. He, Mater. Sci. Eng., B 151, 210–219 (2008)CrossRefGoogle Scholar
  11. 11.
    P. Pieta, F. D’Souza, I. Obraztsov, W. Kutner, ECS J. Solid State Sci. Technol. 2(10), M3120-M3134 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee. J. Mater. Chem. 22, 767 (2012)CrossRefGoogle Scholar
  13. 13.
    C. Peng, S. Zhang, D. Jewell, Z. George, Chen, Prog. Nat. Sci. 18, 777–788 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Yang, Y. Liu, S. Liu, L. Li, C. Zhang, T. Liu.  https://doi.org/10.1039/c6qm00150e
  15. 15.
    A.M.P. Hussain, A. Kumar, F. Singh, D.K. Avasthi, J. Phys. D: Appl. Phys. 39, 750–755 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    P. Ghosh, K. Datta, A. Mulchandani, R.G. Sonkawade, K. Asokan, D.M. Shirsat, Smart Mater. Struct. 22, 035004 (2013) (8 pp)ADSCrossRefGoogle Scholar
  17. 17.
    S.B. Kadam, K. Datta, P. Ghosh, A.B. Kadam, P.W. Khirade, V. Kumar, R.G. Sonkawade, A.B. Gambhire, M.K. Lande, M.D. Shirsat, Appl Phys A (2010)Google Scholar
  18. 18.
    D.K. Avasthi, Curr. Sci. 78(11), 10 (2000)Google Scholar
  19. 19.
    A.M.P. Hussain, A. Kumar, Eur. Phys. J. Appl. Phys. 36, 105–109 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    A.M.P. Hussain, D. Saikia, F. Singh, D.K. Avasthi, A. Kumar, Nuclear Instrum. Methods Phys. Res. B 240, 834–841 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    A. Amarjeet Kaur, D.K. Dhillon, Avasthi, J. Appl. Phys. 106, 073715 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    C. Downs, J. Nugent, P.M. Ajayan, D.J. Duquette, K.S. Santhanam, Adv. Mater. 11(12), 1028–1031 (1999)CrossRefGoogle Scholar
  23. 23.
    A.B. Kaiser, Rep. Prog. Phys. 64, 1–49 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    M.A. Deshmukh, H.K. Patil, G.A. Bodkhe, M. Yasuzawa, P. Koinkar, A. Ramanavicius, S. Pandey, M. Shirsat, Colloids Surf. A 537, 303–309Google Scholar
  25. 25.
    M.A. Deshmukh, H.K. Patil, M.D. Shirsat, A. Ramanavicius, AIP Conference proceedings 1832 (1), p. 050084Google Scholar
  26. 26.
    M. Hasik, A. Drelinkiewicz, E. Wenda, C. Paluszkicz, S. Quillard, J. Mol. Struct. 596, 89–99 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    V.A. Anand Kumar, S. Kumar, M. Husain, Int. J. Polym. Anal. Charact. 16, 298–306 (2011)CrossRefGoogle Scholar
  28. 28.
    S.P. Surwade, S.R. Agnihotra, V. Dua, S.K. Manohar, Sens. Actuators B 143, 454–457 (2009)CrossRefGoogle Scholar
  29. 29.
    A. Arratia, H. Gomez, R. Schrebler, R. Cordova, M.A. del Valle, J Electr Chem 377(1), 75–83 (1994)Google Scholar
  30. 30.
    K. Harshada, H.K. Patil, Megha, M.A. Deshmukh, S.D. Gaikwad, G.A. Bodkhe, K. Asokan, M.D. Shirsat, M. Yasuzawa, P. Koinkar, D. Mahendra, Radiat. Phys. Chem. 130, 47–51 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    A. Kumar, S. Banerjee, P. Jyoti, B.K. Saikia, Konwar, Nanotechnology 21 (2010) (8 pp) 175102ADSCrossRefGoogle Scholar
  32. 32.
    V. Milind, A.K. Kulkarni, Viswanath, Eur. Polymer J. 40, 379–384 (2004)CrossRefGoogle Scholar
  33. 33.
    R.K. Agrawall, V. Meriga, R. Paul, A.K. Chakraborty, A.K. Mitra, eXPRESS Polym. Lett. 10(9), 780–787 (2016)CrossRefGoogle Scholar
  34. 34.
    S.M. Pethe, S.B Kondawar, Adv. Mat. Lett 5(12), 728–733 (2014)CrossRefGoogle Scholar
  35. 35.
    S. Ding, X. Lu, J. Zheng, W. Zhang, Mater. Sci. Eng. B 135, 10–14 (2006)CrossRefGoogle Scholar
  36. 36.
    A. Kumar, S. Banerjee, Adv. Mat. Lett 4(6), 433–437 (2013)CrossRefGoogle Scholar
  37. 37.
    S. Dhanavel, E.A.K. Nivethaa, D. Sangamithirai, V. Narayanan, A. Stephen, Int. J. Innov. Res. Sci. Eng. (ISSN 2347-3207, online)Google Scholar
  38. 38.
    A. Crawford, E. Silva, K. York, C. Li, Raman spectroscopy: a comprehensive review. https://www.academia.edu/1131363/Raman_Spectroscopy_A_Comprehensive_Review
  39. 39.
    J. Xu, P. Yao, X.L.F. He, Mater. Sci. Eng. B 151, 210–219 (2008)CrossRefGoogle Scholar
  40. 40.
    M.A. Bavio, G.G. Acosta, T. Kessler, J. Power Sour. 245, 475e481 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Harshada K. Patil
    • 1
  • Megha A. Deshmukh
    • 1
  • Gajanan A. Bodkhe
    • 1
  • Sumedh M. Shirsat
    • 2
  • K. Asokan
    • 3
  • Mahendra D. Shirsat
    • 1
  1. 1.Department of Physics, Centre for Advanced Sensor Technology, RUSADr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia
  2. 2.Jawaharlal Nehru Engineering CollegeAurangabadIndia
  3. 3.Inter University Accelerator CentreNew DelhiIndia

Personalised recommendations