Applied Physics A

, 124:427 | Cite as

Fabrication and electrochemical properties of activated CNF/Cu x Mn1−xFe2O4 composite nanostructures

  • Sukanya NilmoungEmail author
  • Somchai Sonsupap
  • Montree Sawangphruk
  • Santi Maensiri


This work reports the fabrication and electrochemical properties of activated carbon nanofibers composited with copper manganese ferrite (ACNF/Cu x Mn1−xFe2O4: x = 0.0, 0.2, 0.4, 0.6, 0.8) nanostructures. The obtained samples were characterized by means of X-ray diffraction, field emission scanning electron microscopy, Brunauer–Emmett–Teller analyzer, thermal gravimetric analysis, X-ray photoemission spectroscopy, and X-ray absorption spectroscopy. The supercapacitive behavior of the electrodes is tested using cyclic voltammetery, galvanostatic charge–discharge and electrochemical impedance spectroscopy. By varying ‘x’, the highest specific capacitance of 384 F/g at 2 mV/s using CV and 314 F/g at 2 A/g using GCD are obtained for the x = 0.2 electrode. The second one of 235 F/g at 2 mV/s using CV and 172 F/g at 2 A/g using GCD are observed for x = 0.8 electrode. The corresponding energy densities are 74 and 41 Wh/kg, respectively. It is observed that the cyclic stability of the prepared samples strongly depend on the amount of carbon, while the specific capacitance was enhanced by the sample with nearly proportional amount between carbon and CuMnFe2O4. Such results may arise from the synergetic effect between CuMnFe2O4 and ACNF.



This work was supported by Thailand Research Fund and Synchrotron Light Research Institute (Public Organization) (TRF-SLRI) (Grant Number TRG5980001). The authors are thankful to the department of Applied Physics Rajamagala University of Technology Isan (RMUTI), the Advanced Material Physics Laboratory (AMP) at Suranaree University of Technology (SUT), for all facilities.


  1. 1.
    M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)CrossRefGoogle Scholar
  2. 2.
    H.R. Ghenaatian, M.F. Mousavi, M.S. Rahmanifar, Synth. Met. 161, 2017–2023 (2011)CrossRefGoogle Scholar
  3. 3.
    L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520–2531 (2009)CrossRefGoogle Scholar
  4. 4.
    J.P. Zheng, J. Electrochem. Soc. 152, A1864–A1869 (2005)CrossRefGoogle Scholar
  5. 5.
    H. Jiang, P.S. Lee, C. Li, Energy Environ. Sci. 6, 41–53 (2013)CrossRefGoogle Scholar
  6. 6.
    V. Gupta, N. Miura, Electrochem. Solid State Lett. 8, A630 (2005)CrossRefGoogle Scholar
  7. 7.
    H. Wang, Y. Wang, X. Wang, N. J. Chem. 37, 869–872 (2013)CrossRefGoogle Scholar
  8. 8.
    G.H. Yue, Y.C. Zhao, C.G. Wang, X.X. Zhang, X.Q. Zhang, Q.S. Xie, Electrochim. Acta 152, 315–322 (2015)CrossRefGoogle Scholar
  9. 9.
    K. Wang, X. Dong, C. Zhao, X. Qian, Y. Xu, Electrochim. Acta 152, 433–442 (2015)CrossRefGoogle Scholar
  10. 10.
    P.M. Kulal, D.P. Dubal, C.D. Lokhande, V.J. Fulari, J. Alloys Compd. 509, 2567–2571 (2011)CrossRefGoogle Scholar
  11. 11.
    D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, J. Phys. Chem. C 113, 8606–8615 (2009)CrossRefGoogle Scholar
  12. 12.
    L. Wu, P.O. Jubert, D. Berman, W. Imaino, A. Nelson, H. Zhu, S. Zhang, S. Sun, Nano Lett. 14, 3395–3399 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    S. Nilmoung, P. Kidkhunthod, S. Pinitsoontorn, S. Rujirawat, R. Yimnirun, S. Maensiri, Appl. Phys. A. 119(1), 141–154 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    H. Zhu, S. Zhang, Y.X. Huang, L. Wu, S. Sun, Nano Lett. 13, 2947–2951 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    S. Nilmoung, T. Sinprachim, I. Kotutha, P. Kidkhunthod, R. Yimnirun, S. Rujirawat, S. Maensiri, J. Alloys Compd. 688, 1131–1140 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, J. Am. Chem. Soc. 126(1), 273–279 (2004)CrossRefGoogle Scholar
  17. 17.
    K. Vijaya Sankar, R. Kalai Selvan, J. Power Sources. 275, 399–407 (2015)CrossRefGoogle Scholar
  18. 18.
    S.F. Zhoua, X.J. Hana, H.L. Fanb, Q.X. Zhangc, Y.Q. Liua, Electrochim. Acta 174, 1160–1166 (2015)CrossRefGoogle Scholar
  19. 19.
    M.K. Zate, S.M. Shaikh, V.V. Jadhav, K.K. Tehare, S.S. Kolekar, R.S. Mane, M. Naushad, B.N. Pawar, K.N. Hui, J Anal Appl Pyrolysis. 116, 177–182 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Taei, F. Hasanpour, F. Basiri, N. Tavakkoli, N. Rasouli, Microchem. J. 129, 166–172 (2016)CrossRefGoogle Scholar
  21. 21.
    B. Li, Y. Fu, H. Xia, X. Wang, Mater. Lett. 122, 193–196 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Sang, Y. Cui, Z. Li, W. Ye, H. Li, X.S. Zhao, P. Guo, Sens. Actuators B 234, 46–52 (2016)CrossRefGoogle Scholar
  23. 23.
    S.L. Kuo, N.L. Wu, J. Power Sources. 162, 1437–1443 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    M.S.A. Rahaman, A.F. Ismail, A. Mustafa, Polym. Degrad. Stab. 92, 1421–1432 (2007)CrossRefGoogle Scholar
  25. 25.
    D. Zhu, C. Xu, N. Nakura, M. Matsuo, Carbon 40, 363–373 (2002)CrossRefGoogle Scholar
  26. 26.
    W. Wang, P. Liu, M. Zhang, J. Hu, F. Xing, Open J. Compos. Mater. 2, 104–112 (2012)CrossRefGoogle Scholar
  27. 27.
    H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974)Google Scholar
  28. 28.
    M. Kunowsky, J.P. Marco-Lozar, A. Oya, A. Linares-Solano, Carbon. 50, 1407 (2012)CrossRefGoogle Scholar
  29. 29.
    J. Xiao, G. Xu, S.-G. Sun, S. Yang, Part. Part. Syst. Charact. 30, 893–904 (2013)CrossRefGoogle Scholar
  30. 30.
    G.H. Yue, Y. Zhang, X.Q. Zhang, C.G. Wang, Y.C. Zhao, D.L. Peng, Appl. Phys. A 118, 763–767 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    C.C. Chusuei, M.A. Brookshier, D.W. Goodman, Langmuir. 15, 2806–2808 (1999)CrossRefGoogle Scholar
  32. 32.
    D.D. Hawn, B.M. DeKoven, Surf. Interface Anal. 10, 63 (1987)CrossRefGoogle Scholar
  33. 33.
    X.Y. Longa, J.Y. Lia, D. Shenga, H.Z. Liana, Talanta. 166, 36–45 (2017)CrossRefGoogle Scholar
  34. 34.
    T. Simsek, S. Akansel, S. Ozcan, A. Ceylan, Ceram. Int. 40, 7953–7956 (2014)CrossRefGoogle Scholar
  35. 35.
    Y.W. Ju, G.R. Choi, H.R. Jung, W.J. Lee, Electrochim. Acta 53, 5796 (2008)CrossRefGoogle Scholar
  36. 36.
    H. Wang, Q. Gao, J. Hu, Microporous Mesoporous Mater. 131, 89–96 (2010)CrossRefGoogle Scholar
  37. 37.
    X.J. Zhu, Y.W. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, ACS Nano. 5, 3333 (2011)CrossRefGoogle Scholar
  38. 38.
    B. Bashir, W. Shaheen, M. Asghar, M.F. Warsi, M.A. Khan, S. Haider, I. Shakir, M. Shahid, J. Alloys Compd. 695, 881–887 (2017)CrossRefGoogle Scholar
  39. 39.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, (Plenum Press, New York, 1999)CrossRefGoogle Scholar
  40. 40.
    J. Li, D.B. Le, P.P. Ferguson, J.R. Dahn, Electrochim. Acta 55, 2991 (2010)CrossRefGoogle Scholar
  41. 41.
    J.E. Yang, I. Jang, M. Kim, S.H. Baeck, S. Hwang, S.E. Shim, Electrochim. Acta 111, 136–143 (2013)CrossRefGoogle Scholar
  42. 42.
    V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, F. Beguin, Appl. Phys. A. 82, 567–573 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    J.G. Wang, Y. Yang, Z.H. Huang, F. Kang, J. Power Sources. 204, 236–243 (2012)CrossRefGoogle Scholar
  44. 44.
    K. Krishnamoorthy, G. Veerasubramani, S. Radhakrishnan, S.J. Kim, Mater. Res. Bull. 50, 499–502 (2014)CrossRefGoogle Scholar
  45. 45.
    T.C. Girija, M.V. Sangaranarayanan, J. Power Sources. 156, 705 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    X. Yang, D. Wu, X. Chen, R. Fu, J. Phys. Chem. C 114, 8581–8586 (2010)CrossRefGoogle Scholar
  47. 47.
    X. Liu, L. Zhou, Y. Zhao, L. Bian, X. Feng, Q. Pu, ACS Appl. Mater. Interfaces. 5, 10280–10287 (2013)CrossRefGoogle Scholar
  48. 48.
    D.K. Pawar, S.M. Pawar, P.S. Patil, S.S. Kolekar, J. Alloys Compd. 509, 3587–3591 (2011)CrossRefGoogle Scholar
  49. 49.
    S.B. Waje, M. Hashim, W.D.W. Yusoff, Z. Abbas, Appl. Surf. Sci. 256(10), 3122–3131 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    A. Eftekhari, Microporous Mesoporous Mater. 243, 355–369 (2017)CrossRefGoogle Scholar
  51. 51.
    G. Fan, Y. Wen, B. Liu, W. Yang, J. Nanopart. Res. 20, 43 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sukanya Nilmoung
    • 1
    Email author
  • Somchai Sonsupap
    • 2
  • Montree Sawangphruk
    • 3
  • Santi Maensiri
    • 2
  1. 1.Department of Applied Physics, Faculty of Sciences and Liberal ArtsRajamangala University of Technology IsanNakhon RatchasimaThailand
  2. 2.School of Physics, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand
  3. 3.Department of Chemical and Biomolecular Engineering, School of Energy Science and TechnologyVidyasirimedhi Institute of Science and TechnologyRayongThailand

Personalised recommendations