Applied Physics A

, 124:398 | Cite as

Fabrication of the tea saponin functionalized reduced graphene oxide for fast adsorptive removal of Cd(II) from water

  • Zhigang Li
  • Zhifeng Liu
  • Zhibin Wu
  • Guangming Zeng
  • Binbin Shao
  • Yujie Liu
  • Yilin Jiang
  • Hua Zhong
  • Yang Liu
Article
  • 53 Downloads

Abstract

A novel graphene-based material of tea saponin functionalized reduced graphene oxide (TS-RGO) was synthesized via a facil thermal method, and it was characterized as the absorbent for Cd(II) removal from aqueous solutions. The factors on adsorption process including solution pH, contact time, initial concentration of Cd(II) and background electrolyte cations were studied to optimize the conditions for maximum adsorption at room temperature. The results indicated that Cd(II) adsorption was strongly dependent on pH and could be strongly affected by background electrolytes and ionic strength. The optimal pH and required equilibrium time was 6.0 and 10 min, respectively. The Cd(II) removal decreased with the presence of background electrolyte cations (Na+ < Ca2+ < Al3+). The adsorption kinetics of Cd(II) followed well with the pseudo-second-order model. The adsorption isotherm fitted well to the Langmuir model, indicating that the adsorption was a monolayer adsorption process occurred on the homogeneous surfaces of TS-RGO. The maximum monolayer adsorption capacity was 127 mg/g at 313 K and pH 6.0. Therefore, the TS-RGO was considered to be a cost-effective and promising material for the removal of Cd(II) from wastewater.

Notes

Acknowledgements

The study was financially supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17), the National Natural Science Foundation of China (51679085, 51378192, 51378190, 51521006), the Fundamental Research Funds for the Central Universities of China (531107050930).

Compliance with ethical standards

Conflict of interest

Authors declare that they have no competing interests.

Supplementary material

339_2018_1816_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 KB)

References

  1. 1.
    M. Alvand, F. Shemirani, Microchim. Acta 181, 181–188 (2014)CrossRefGoogle Scholar
  2. 2.
    C. Namasivayam, K. Ranganathan, Water Res. 29, 1737–1744 (1995)CrossRefGoogle Scholar
  3. 3.
    D. Mohan, K.P. Singh, Water Res. 36, 2304–2318 (2002)CrossRefGoogle Scholar
  4. 4.
    S. Wu, K. Zhang, X. Wang, J. Yong, Chem. Eng. J. 262, 1292–1302 (2015)CrossRefGoogle Scholar
  5. 5.
    N. Kongsricharoern, C. Polprasert, Water Sci. Technol. 34, 109–116 (1996)Google Scholar
  6. 6.
    E. Pehlivan, T. Altun, J. Hazard. Mater. 134, 149–156 (2006)CrossRefGoogle Scholar
  7. 7.
    G. Zeng, Y. Liu, L. Tang, Chem. Eng. J. 259, 153–160 (2015)CrossRefGoogle Scholar
  8. 8.
    U. Divrikli, A.A. Kartal, M. Soylak, L. Elci, J. Hazard. Mater. 145, 459–464 (2007)CrossRefGoogle Scholar
  9. 9.
    A.S. Cukrowski, J. Mol. Liq. 202, 165–175 (2015)CrossRefGoogle Scholar
  10. 10.
    G. Mckay, H.S. Blair, J.R. Gardner, J. Appl. Polym. Sci. 27, 3043–3057 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Goyal, Environ. Sci. Technol. 29, 109A–109A (1995)Google Scholar
  12. 12.
    G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Environ. Sci. Technol. 45, 10454–10462 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    B. Yu, J. Xu, J.H. Liu, S.T. Yang, J. Luo, J. Environ. Chem. Eng. 1, 1044–1050 (2013)CrossRefGoogle Scholar
  14. 14.
    W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, Nat. Chem. 1, 403 (2009)CrossRefGoogle Scholar
  15. 15.
    Y. Wu, H. Luo, H. Wang, C. Wang, J. Zhang, Z. Zhang, J. Colloid Interface Sci. 394, 183–191 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Wu, H. Zhong, X. Yuan, H. Wang, L. Wang, Water Res. 67, 330–344 (2014)CrossRefGoogle Scholar
  17. 17.
    X. Yuan, Z. Wu, H. Zhong, H. Wang, X. Chen, L. Leng, L. Jiang, Z. Xiao, G. Zeng, Environ. Sci. Pollut. Res. Int. 23, 18657 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Song, L. Zhu, W. Zhou, Environ. Pollut. 156, 1368–1370 (2008)CrossRefGoogle Scholar
  19. 19.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  20. 20.
    R. Qu, Y. Zhang, C. Sun, C. Wang, C. Ji, H. Chen, P. Yin, J. Chem. Eng. Data 55, 1496–1504 (2010)CrossRefGoogle Scholar
  21. 21.
    H. Wang, X. Yuan, Y. Wu, H. Huang, G. Zeng, Y. Liu, X. Wang, N. Lin, Y. Qi, Appl. Surf. Sci. 279, 432–440 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    J. Huang, Z. Wu, L. Chen, Y. Sun, J. Mol. Liq. 209, 753–758 (2015)CrossRefGoogle Scholar
  23. 23.
    V.H. Pham, D.P. Hai, T.T. Dang, S.H. Hur, E.J. Kim, B.S. Kong, S. Kim, S.C. Jin, J. Mater. Chem. 22, 10530–10536 (2012)CrossRefGoogle Scholar
  24. 24.
    C. Cheng, J. Wang, Y. Xin, A. Li, C. Philippe, J. Hazard. Mater. 264, 332–341 (2014)CrossRefGoogle Scholar
  25. 25.
    X. Yuan, Z. Wu, H. Zhong, H. Wang, X. Chen, L. Leng, L. Jiang, Z. Xiao, G. Zeng, Environ. Sci. Pollut. Res. 23, 1–15 (2016)CrossRefGoogle Scholar
  26. 26.
    X. Mi, G. Huang, W. Xie, W. Wang, Y. Liu, J. Gao, Carbon 50, 4856–4864 (2012)CrossRefGoogle Scholar
  27. 27.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)CrossRefGoogle Scholar
  28. 28.
    R. Amarowicz, R.B. Pegg, K. Okubo, Mol. Nutr. Food Res. 40, 342–343 (2010)Google Scholar
  29. 29.
    J.N. Tiwari, K. Mahesh, N.H. Le, K.C. Kemp, R. Timilsina, R.N. Tiwari, K.S. Kim, Carbon 56, 173–182 (2013)CrossRefGoogle Scholar
  30. 30.
    R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, R. Wrzalik, Dalton Trans. 42, 5682 (2013)CrossRefGoogle Scholar
  31. 31.
    G. Zhao, X. Ren, X. Gao, X. Tan, J. Li, C. Chen, Y. Huang, X. Wang, Dalton Trans. 40, 10945–10952 (2011)CrossRefGoogle Scholar
  32. 32.
    X.J. Hu, H.Z. Jin, X.H. Liu, W.D. Zhang, Helv. Chim. Acta. 42, 306–394 (2011)CrossRefGoogle Scholar
  33. 33.
    L. Xiong, C. Chen, Q. Chen, J. Ni, J. Hazard. Mater. 189, 741 (2011)CrossRefGoogle Scholar
  34. 34.
    V. Aggarwal, H. Li, S.A.B. And, B.J. Teppen, Environ. Sci. Technol. 40, 894–899 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    J.N. Wang, Y. Zhou, A.M. Li, L. Xu, J. Hazard. Mater. 176, 1018 (2010)CrossRefGoogle Scholar
  36. 36.
    X. Peng, F. Hu, H. Dai, Q. Xiong, C. Xu, J. Taiwan Inst. Chem. Eng. 65, 472–481 (2016)CrossRefGoogle Scholar
  37. 37.
    J. Eastoe, J.S. Dalton, Adv. Colloid Interface Sci 85, 103–144 (2000)CrossRefGoogle Scholar
  38. 38.
    Z. Wang, X. Zhang, X. Wu, J.G. Yu, X.Y. Jiang, Z.L. Wu, X. Hao, J. Sol Gel Sci. Technol. 1–10 (2017)Google Scholar
  39. 39.
    G. Zhao, J. Li, X. Wang, Chem. Eng. J. 173, 185–190 (2011)CrossRefGoogle Scholar
  40. 40.
    S.A. Kumar, S.P. Pandey, N. Thakur, H. Parab, J. Hazard. Mater. 262, 265–273 (2013)CrossRefGoogle Scholar
  41. 41.
    D.M. Griffith, B. Szőcs, T. Keogh, K.Y. Suponitsky, E. Farkas, P. Bugly, C.J. Oacute, Marmion, J. Inorg. Biochem. 105, 763 (2011)CrossRefGoogle Scholar
  42. 42.
    M.F. Li, Y.G. Liu, G.M. Zeng, S.B. Liu, X.J. Hu, J. Colloid Interface Sci. 485, 269–279 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    Z. Wang, G. Liu, H. Zheng, F. Li, Bioresour. Technol. 177, 308 (2015)CrossRefGoogle Scholar
  44. 44.
    W. Liu, J. Ni, X. Yin, Water Res 53, 12–25 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Sun, Q. Wang, C. Chen, X. Tan, X. Wang, Environ. Sci. Technol. 46, 6020 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    S.W.N. Wan, N.F.M. Ariff, A. Hashim, M. Hanafiah, Clean Soil Air Water 38, 394–400 (2010)CrossRefGoogle Scholar
  47. 47.
    T.G. Vargo, J.A. Gardella, A vacuum surfaces films. J. Vacuum Sci. Technol. 7, 1733–1741 (1989)ADSCrossRefGoogle Scholar
  48. 48.
    T.G. Vargo Jr., J.A. Gardella, A vacuum surfaces films. J. Vacuum Sci. Technol. 7, 1733–1741 (1989)ADSCrossRefGoogle Scholar
  49. 49.
    I. Langmuir, J. Frankl. Inst. 184, 102–105 (1917)CrossRefGoogle Scholar
  50. 50.
    A.A. Atia, A.M. Donia, A.M. Yousif, Sep. Purif. Technol. 61, 348–357 (2008)CrossRefGoogle Scholar
  51. 51.
    R. Balasubramanian, S.V. Perumal, K. Vijayaraghavan, Ind. Eng. Chem. Res. 48, 2093–2099 (2009)CrossRefGoogle Scholar
  52. 52.
    X. Deng, L. Lü, H. Li, L. Fang, J. Hazard. Mater. 183, 923–930 (2010)CrossRefGoogle Scholar
  53. 53.
    K. Jyotsna Goel, C. Kadirvelu, A. Rajagopal, V.K. Garg, Ind. Eng. Chem. Res. 45, 6531–6537 (2006)CrossRefGoogle Scholar
  54. 54.
    L.V. Gurgel, L.F. Gil, Water Res. 43, 4479 (2009)CrossRefGoogle Scholar
  55. 55.
    C. Moreno-Castilla, M.A. Alvarez-Merino, M.V. López-Ramón, J. Rivera-Utrilla, Langmuir ACS J. Surf. Colloids. 20, 8142–8148 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhigang Li
    • 1
  • Zhifeng Liu
    • 1
  • Zhibin Wu
    • 2
  • Guangming Zeng
    • 1
  • Binbin Shao
    • 1
  • Yujie Liu
    • 1
  • Yilin Jiang
    • 1
  • Hua Zhong
    • 1
    • 3
  • Yang Liu
    • 1
  1. 1.College of Environmental Science and EngineeringHunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of EducationChangshaPeople’s Republic of China
  2. 2.College of Bioscience and BiotechnologyHunan Agricultural UniversityChangshaPeople’s Republic of China
  3. 3.State Key Laboratory of Water Resources and Hydropower Engineering ScienceWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations