Applied Physics A

, 124:384 | Cite as

Room-temperature ferromagnetic Zn1−xNi x S nanoparticles

  • Chaitanya Kumar Kunapalli
  • Kaleemulla Shaik


Nickel-doped zinc sulfide nanoparticles (Zn1−xNi x S) at x = 0.00, 0.02, 0.05, 0.08 and 0.10 were synthesized by solid-state reaction. The (nickel sulfide) NiS and (zinc sulfide) ZnS nanoparticles in desired ratios were taken, mixed and ground for 6 h at a speed rate of 300 rpm using a planetary ball mill. The milled nanoparticles were sintered at 600 °C for 8 h using a high-temperature vacuum furnace. The structural, optical, luminescence and magnetic properties of the Zn1−xNi x S nanoparticles were characterized by powder X-ray diffraction (XRD), UV–Vis–NIR diffuse reflectance spectroscopy, photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). No change in crystal structure was observed from XRD by substitution of Ni into ZnS lattice. The mean crystallite size was found to be 37 nm. The band gap of Zn1−xNi x S nanoparticles decreased from 3.57 to 3.37 eV on increasing the dopant concentration. The room-temperature photoluminescence (PL) spectra of Zn1−xNi x S nanoparticles showed two broad and intense emission peaks at 420 and 438 nm with excitation wavelength of 330 nm. The Zn1−xNi x S nanoparticles showed ferromagnetism at 100 K and at room temperature (300 K) and also the strength of magnetization increased with Ni concentration. The maximum magnetization value of 0.18 emu/g was observed for x = 0.10 at 100 K. The strength of the magnetization observed at 100 K was higher than that of magnetization observed at 300 K.



The authors are highly thankful to VIT-SIF for providing XRD, PL and DRS facilities to carry out the present work. Further authors are also thankful to Dr. G. Venugopal Rao, IGCAR, Kalpakkam, for providing the vibrating sample magnetometer facilities.


  1. 1.
    A. Datta, S.K. Panda, S. Chaudhuri, J. Solid State Chem. 181, 2332–2337 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    A. Franco Jr., H.V.S. Pessoni, P.R.T. Ribeiro, F.L.A. Machado, J. Magn. Magn. Mater. 426, 347–350 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Li, C. Cao, Z. Chen, Chem. Phys. Lett. 517, 55–58 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    W.-S. Ni, Y.-J. Lin, J. Alloy. Compd. 649, 968–972 (2015)CrossRefGoogle Scholar
  5. 5.
    H. Van Bui, H.N. Nguyen, N.N. Hoang, T.T. Truong, V.B. Pham. IEEE Trans. Magn. 50, 1–4 (2014)Google Scholar
  6. 6.
    S. Kumar, N.K. Verma, J. Mater. Sci. Mater. Electron. 25, 785–790 (2014)CrossRefGoogle Scholar
  7. 7.
    H. Soni, M. Chawda, D. Bodas. Mater. Lett. 63, 767–769 (2009)CrossRefGoogle Scholar
  8. 8.
    C.S. Pathak, P.K. Pathak, P. Kumar, M.K. Mandal, J. Ovonic Res. 8, 15–20 (2012)Google Scholar
  9. 9.
    A.K. Das, A.K. Buzarbaruah, S. Bardaloi, Int. J. Sci. Res. Publ. 618 (2013)Google Scholar
  10. 10.
    R. Choudhury, S. Bordaloi, Int. J. Appl. Sci. Eng. Res. 3, 712–722 (2014)Google Scholar
  11. 11.
    Z. Dehghani, S. Nazerdeylami, E. Saievar-Iranizad, M.H. Majles, Ara, J. Phys. Chem. Solids 72, 1008–1010 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    R.S. Kumar, V. Veeravazhuthi, N. Muthukumarasamy, M. Thambidurai, D.V. Shankar, Superlattices Microstruct. 86, 552–558 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, 1972)Google Scholar
  14. 14.
    R. Kuzel, V. Valvoda, M. Chladek, J. Musil, J. Matous, Thin Solid Films 263, 150–158 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    S. Muruganandam, G. Anbalagan, G. Murugadoss, Optik Int. J. Light Electron Opt. 130, 82–90 (2017)CrossRefGoogle Scholar
  16. 16.
    S.Z.H. Shah, S. Riaz, Z.N. Kayani, S. Naseem, The 2016 World Congress on Advances in Civil, Environmental and Materials Research (ACEM’16), (ICC Jeju, Jeju Island, Korea, 2016)Google Scholar
  17. 17.
    N. Nripasree, N.K. Deepak, Mater. Sci. Eng. B 211, 121–127 (2016)CrossRefGoogle Scholar
  18. 18.
    J.J. Tauc, Amorphous and Liquid Semiconductors (Plenum, London, 1974)CrossRefGoogle Scholar
  19. 19.
    R. Sahraei, S. Darafarin, J. Lumin. 149, 170–175 (2014)CrossRefGoogle Scholar
  20. 20.
    W.Q. Peng, G.W. Cong, S.C. Qu, Z.G. Wang, Opt. Mater. 29, 313–317 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    S. Sambasivam, B. Sathyaseelan, D. Raja Reddy, B.K. Reddy, C.K. Jayasankar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71, 1503–1506 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    P.K. Ghosh, S. Jana, S. Nandy, K.K. Chattopadhyay, Mater. Res. Bull. 42, 505–514 (2007)CrossRefGoogle Scholar
  23. 23.
    K. Manzoor, V. Aditya, S.R. Vadera, N. Kumar, T.R.N. Kutty, J. Phys. Chem. Solids 66, 1164–1170 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    S.P. Kaur, C.-L. Kumar, K.-S. Chen, D.-H. Yang, C.-L. Wei, C. Dong, S.M. Rao, Mater. Chem. Phys. 186, 124–130 (2017)CrossRefGoogle Scholar
  25. 25.
    K.C. Kumar, N. Madhusudhana Rao, S. Kaleemulla, G. Venugopal Rao, Phys. B 522, 75–80 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    C.L. Sanjeev Kumar, C.L. Chen, Y.K. Dong, J.F. Ho, T.S. Lee, R. Chan, T.K. Thangavel, B.H. Chen, S.M. Mok, M.K. Rao, Wu, J. Alloy Compd. 554, 357–362 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Frank, L. Owens, R. Gladczuk, P. Szymczak, A. Dluzewski, H. Wisniewski, A.S. Golnik, C. Bernhard, C. Niedermayer, J. Phys. Chem. Solids 72, 648–652 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    J. Sandonis, J. Baruchel, B.K. Tanner, G. Fillion, V.V. Kvardakov, K.M. Podurets, J. Magn. Magn. Mater. 104, 350–352 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    D.P. Norton, S.J. Pearton, A.F. Hebard, N. Theodoropoulou, L.A. Boatner, R.G. Wilson, Appl. Phys. Lett. 82, 239–241 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    O.D. Jayakumar, I.K. Gopalakrishnan, R.M. Kadam, A. Vinu, A. Asthana, A.K. Tyagi, J. Cryst. Growth 300, 358–363 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    D. Singh, A. Mahajan, Ceram. Int. 41, 11748–11755 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Thin films Laboratory, School of Advanced SciencesVellore Institute of TechnologyVelloreIndia
  2. 2.Thin films Laboratory, Center for Crystal GrowthVellore Institute of TechnologyVelloreIndia

Personalised recommendations