Advertisement

Applied Physics A

, 124:393 | Cite as

Room temperature ferromagnetism of nanocrystalline Nd1.90Ni0.10O3−δ

  • B. J. Sarkar
  • J. Mandal
  • M. Dalal
  • A. Bandyopadhyay
  • P. K. Chakrabarti
Article
  • 54 Downloads

Abstract

Nanocrystalline sample of Ni2+ doped neodymium oxide (Nd1.90Ni0.10O3−δ, NNO) is synthesized by co-precipitation method. Analysis of X-ray diffraction (XRD) pattern by Rietveld refinement method confirms the desired phase of NNO and complete substitution of Ni2+ ions in the Nd2O3 lattice. Analyses of transmission electron microscopy (TEM) and Raman spectroscopy of NNO recorded at room temperature (RT) also substantiate this fact. Besides, no traces of impurities are found in the analyses of XRD, TEM and Raman data. Room temperature hysteresis loop of NNO suggests the presence of weak ferromagnetism (FM) in low field region (~ 600 mT), but in high field region paramagnetism of the host is more prominent. Magnetization vs. temperature (MT) curve in the entire temperature range (300–5 K) is analyzed successfully by a combined equation generated from three-dimensional (3D) spin wave model and Curie–Weiss law, which suggests the presence of mixed paramagnetic phase together with ferromagnetic phase in the doped sample. The onset of magnetic ordering is analyzed by oxygen vacancy mediated F-center exchange (FCE) coupling mechanism.

Notes

Acknowledgements

Authors acknowledge the financial assistance provided by DST, Govt. of India, through FIST Programme (File No. SR/FST/PSI-170/2011(C) dated 18.05.2012) and UGC, Govt. of India through the CAS program. Authors further acknowledge the UGC-DAE-CSR, Kolkata Centre for providing facility to measure the magnetic property. Authors acknowledge Dr. B. Satpati, Saha Institute of Nuclear Physics, Kolkata for providing facility for TEM measurements.

References

  1. 1.
    M. Venkateshan, C.B. Fitzgerald, J.M.D. Coey, Nature 430, 630 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    H. Ohno, Science 281, 951–956 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    P.P. Murmu, J. Kennedy, B.J. Ruck, G.V.M. Williams, A. Markwitz, S. Rubanov, A.A. Suvorova, J. Mater. Sci. 47, 1119–1126 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    F. Matsukura, H. Ohno, T. Dietl, Handbook of Magnetic Materials, vol. 14 (Elsevier, Amsterdam, 2002)Google Scholar
  6. 6.
    R.K. Singhal, P. Kumari, S. Kumar, S.N. Dolia, Y.T. Xing, M. Alzamora, U.P. Deshpande, T. Shripathi, E. Saitovitch, J. Phys. D Appl. Phys. 44, 165002 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Q.Y. Wen, H.W. Zhang, Q.H. Yang, Y.Q. Song, J.Q. Xiao, J. Mag. Mag. Mater. 321, 3110–3113 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173–179 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    I.Z. Mitrovic, S. Hall, J. Telecommun. Inf. Technol. 4, 51–60 (2009)Google Scholar
  10. 10.
    J. Leveneur, J. Kennedy, G.V.M. Williams, J. Metson, A. Markwitz, Appl. Phys. Lett. 98, 053111 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    J. Wan, L. Qi, B. Chen, F. Song, J. Liu, J. Dong, G. Wang, Appl. Phys. Lett. 95, 152901–152903 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    K. Kaviyarasu, P.P. Murmu, J. Kennedy, F.T. Thema, D. Letsholathebe, L. Kotsedi, M. Maaza, Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater Atoms 409, 147–152 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U. Umbelino De Gomes, M. Maaza, Ceram. Int. 42, 8385–8394 (2016)CrossRefGoogle Scholar
  14. 14.
    N.W. Gray, A. Tiwari, J. Appl. Phys. 110, 033903 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    A. Bandyopadhyay, S. Sutradhar, B.J. Sarkar, A.K. Deb, P.K. Chakrabarti, Appl. Phys. Lett. 100, 252411 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    A. Bandyopadhyay, A.K. Deb, S. Kobayashi, K. Yoshimura, P.K. Chakrabarti, J. Alloy Compd. 611, 324–328 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Mandal, B.J. Sarkar, A.K. Deb, P.K. Chakrabarti, J. Mag. Mag. Mater. 371, 35–42 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    B.J. Sarkar, A. Bandyopadhyay, J. Mandal, A.K. Deb, P.K. Chakrabarti, J. Alloy Compd. 656, 339–346 (2016)CrossRefGoogle Scholar
  19. 19.
    B.J. Sarkar, A.K. Deb, P.K. Chakrabarti, RSC Adv. 6, 6395–6404 (2016)CrossRefGoogle Scholar
  20. 20.
    B.J. Sarkar, J. Mandal, M. Dalal, A. Bandyopadhyay, B. Satpati, P.K. Chakrabarti, J. Electron. Mater. 47, 1768–1779 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    J. Mandal, M. Dalal, B.J. Sarkar, P.K. Chakrabarti, J. Electron. Mater. 46, 1107–1113 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    B. Umesh, B. Eraiah, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, C. Shivakumara, J.L. Rao, R.P.S. Chakradhar, Spectrochim. Acta Part A 94, 365–371 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332–1334 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    B. Santara, P.K. Giri, S. Dhara, K. Imakita, M. Fujii, J. Phys. D Appl. Phys. 47, 235304 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    D. Mishra, B.P. Mandal, R. Mukherjee, R. Naik, G. Lawes, B. Nadgorny, Appl. Phys. Lett. 102, 182404 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    M. Dalal, A. Mallick, A.S. Mahapatra, A. Mitra, A. Das, D. Das, P.K. Chakrabarti, Mater. Res. Bull. 76, 389–401 (2016)CrossRefGoogle Scholar
  27. 27.
    L. Lutterotti, (2006) MAUD, Version 2.046. http://www.ing.unitn.it/maud/. Accessed 2 Apr 2017
  28. 28.
    N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Pärs, J. Phys. Conf. Ser. 93, 012039 (2007)CrossRefGoogle Scholar
  29. 29.
    B. Santara, B. Pal, P.K. Giri, J. Appl. Phys. 110, 114322 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, J. Phys. D Appl. Phys. 33, 912–916 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    L.K. Pan, Q. Sun Chang, C.M. Li, J. Phys. Chem. B 108, 3404–3406 (2004)CrossRefGoogle Scholar
  32. 32.
    D.L. Hou, X.J. Ye, X.Y. Zhao, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, J. Appl. Phys. 102(3), 033905 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Q.Y. Wen, H.W. Zhang, Y.Q. Song, Q.H. Yang, H. Zhu, J.Q. Xiao, J. Phys. Condens. Matter 19, 246205 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    S.K.S. Patel, P. Dhak, M.K. Kim, J.H. Lee, M. Kim, S.K. Kim, J. Mag. Mag. Mater. 403, 155–160 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    G.W. Pratt Jr., Phys. Rev. 108, 1233–1242 (1957)ADSCrossRefGoogle Scholar
  36. 36.
    A.C. Durst, R.N. Bhatt, P.A. Wolff, Phys. Rev. B 65, 235205 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    J.Z. Cai, L. Li, S. Wang, W.Q. Zou, X.S. Wu, F.M. Zhang, Phys. B 424, 42–46 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • B. J. Sarkar
    • 1
  • J. Mandal
    • 1
  • M. Dalal
    • 1
  • A. Bandyopadhyay
    • 1
    • 2
  • P. K. Chakrabarti
    • 1
  1. 1.Solid State Research Laboratory, Department of PhysicsBurdwan UniversityBurdwanIndia
  2. 2.Department of PhysicsUniversity of Gour BangaMaldaIndia

Personalised recommendations