Applied Physics A

, 124:380 | Cite as

Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite

  • Mukhils M. Ismail
  • Sewench N. Rafeeq
  • Jameel M. A. Sulaiman
  • Avinandan Mandal


Improvement of microwave-absorbing materials (MAMs) is the most important research area in various applications, such as in communication, radiation medical exposure, electronic warfare, air defense, and different civilian applications. Conducting polymer, polyaniline doped with para toluene sulphonic acid (PANI-PTSA) as well as cobalt ferrite (CoFe2O4) is synthesized by sol–gel method and intensely blends in different ratios. The characterization of the composite materials, CoFe2O4/PANI-PTSA (CFP1, CFP2, CFP3 and CFP4), was performed by X-ray diffraction (XRD), atomic force microscopy (AFM) and vibrating sample magnetometry (VSM). The microwave-absorbing properties’ reflection loss (dB) and important parameters, such as complex relative permittivity (ε r ′– r ″) and complex relative permeability (µ r ′– r ″) were measured in different microwave frequencies in the X-band (8.2–12.4 GHz) region. The composite material CFP3 showed a wider absorption frequency range and maximum reflection loss of − 28.4 dB (99.8% power absorption) at 8.1 GHz and − 9.6 dB (> 90% power absorption) at 11.2 GHz, and so the composite can be used as a microwave absorber; however, it can be more suitable for application in daily life for making cell phones above 9 GHz. Also the results showed that the thicker composites like CFP3 (4 mm) exhibit obviously better EMI SE as compared with the thinner ones (0.19, 0.19, 0.3 mm); this may be related to the low transmission of the EM wave from the composites.


  1. 1.
    Y.L. Cheng, J.M. Dai, X.B. Zhu, D.J. Wu, Y.P. Sun, Preparation, magnetic and microwave absorption properties of La0.55Sr0.5MnO3/La(OH)3 com. Mater Res Bull 45, 663–667 (2010)CrossRefGoogle Scholar
  2. 2.
    D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V.M. Primiani et al., Broadband electromagnetic absorbers using carbon nanostructurebased composites. IEEE Trans Micr Theory Tech 59, 2633 – 46 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    S.P. Gairola, V. Verma, L. Kumar, M.A. Dar, S. Annapoorni, R.K. Kotnala, Enhanced microwave absorption properties in polyaniline and nano-ferrite composites in X-band. Synth. Met. 160, 2315–2318 (2010)CrossRefGoogle Scholar
  4. 4.
    M.M. Ismail, N. A. Jaber, Structural analysis and magnetic properties of lithium-doped Ni–Zn ferrite nanoparticle. J. Supercond. Nov. Magn. (2017). Google Scholar
  5. 5.
    Y. Li, W.Q. Cao, J. Yuan, D.W. Wang, M.S. Cao, Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic–dielectric synergy. J. Mater. Chem. C 3, 9276–9282 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Fan, Z.F. He, H. Pang, Microwave absorption enhancement of CIP/PANI composites. Synth. Met. 166, 1–6 (2013)CrossRefGoogle Scholar
  7. 7.
    K. Lakshmi, H. John, K.T. Mathew, R. Joseph, K.E. George, Microwave absorption, reaction and EMI shielding of PU-PANI composites. Acta Mater. 57, 371–375 (2009)CrossRefGoogle Scholar
  8. 8.
    J.H. Tang, L. Ma, N. Tian, M.Y. Gan, F.F. Xu, J. Zeng et al., Synthesis and electromagnetic properties of PANI/PVP/CIP core–shell composites. Mater Sci Eng B 186, 26–32 (2014)CrossRefGoogle Scholar
  9. 9.
    C.L. Yuan, Y.S. Hong, C.H. Lin, Synthesis and characterization of Sr(ZnZr)xFe12-2xO19-PANI composites. J Magn Magn Mater 323, 1851–1854 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)CrossRefGoogle Scholar
  11. 11.
    C.L. Zhu, M.L. Zang, Y.J. Qiao, G. Xiao, F. Zhang, Y.J. Chen, Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 114, 16229–16235 (2010)CrossRefGoogle Scholar
  12. 12.
    L. Li, H. Liu, Y. Wang, J. Jiang, F. Xu, Preparation and magnetic properties of Zn–Cu–Cr–La ferrite and its nanocomposites with polyaniline. J. Colloid Interface Sci. 321, 265–271 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    E.C. Gomes, M.A.S. Oliveira, Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines. Am. J. Polymer. Sci. 2(2), 5–13 (2012)CrossRefGoogle Scholar
  14. 14.
    H.D. Tran, J.M. D’Arcy, Y. Wang, P.J. Beltramo, V.A. Strong, R.B. Kaner, The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. J. Mater. Chem. 21, 3534–3550 (2011)CrossRefGoogle Scholar
  15. 15.
    S.K. Shukla, A. Bharadvaja, A. Tiwari, G.K. Parashar, G.C. Dubey, Synthesis and characterization of highly crystalline polyaniline film promising for humid sensor. Adv. Mat. Lett. 1(2), 129–134 (2010)CrossRefGoogle Scholar
  16. 16.
    C.Y. Xuehong Lua, J.X. Tana, C. Heb, Thermal degradation of electrical conductivity of polyacrylic acid doped polyaniline: effect of molecular weight of the dopants. Synth. Met. 138, 429–440 (2003)CrossRefGoogle Scholar
  17. 17.
    J. Zang, Y. Wang, X. Zhao, G. Xin, S. Sun, X. Qu, S. Ren, Electrochemical synthesis of polyaniline on nanodiamond powder. Int. J. Electrochem. Sci. 7, 1677–1687 (2012)Google Scholar
  18. 18.
    A.M. Pharhad Hussain, A. Kumar, Electrochemical synthesis and characterization of chloride doped polyaniline. Bull. Mater. Sci. 26(3), 329–334 (2003)CrossRefGoogle Scholar
  19. 19.
    V. Luthra, R. Singh, S.K. Gupta, A. Mansingh, Mechanism of dc conduction in polyaniline doped with sulfuric acid. Curr. Appl. Phys. 3, 219–222 (2003)CrossRefGoogle Scholar
  20. 20.
    M. Campos, B. Bello, Jr, Mechanism of conduction in doped polyaniline. J. Phys. D: Appl. Phys. 30, 1531–1535 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    J. Stejskal, I. Sapurina, J. Prokes, J. Zemek, In situ polymerized polyaniline films. Synth. Met. 105, 195–202 (1999)CrossRefGoogle Scholar
  22. 22.
    J. Kim, S. Kwon, D.W. Ihm, Synthesis and characterization of organic soluble polyaniline prepared by one-step emulsion polymerization. Curr. Appl. Phys. 7, 205–210 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    R. Patil, A.S. Roy, K.R. Anilkumar, K.M. Jadhav, S. Ekhelikar, Dielectric relaxation and ac conductivity of polyaniline–zinc ferrite composite. Compos. B 43, 3406–3411 (2012)CrossRefGoogle Scholar
  24. 24.
    M.M. Ismail, N.A. Jaber, Influences of cation distribution of zinc substituted on inverse spinal nickel ferrite nanoparticle for superparamagnetic approach. Surf. Rev. Lett. 25(3), 1850076 (2018)CrossRefGoogle Scholar
  25. 25.
    P. Xiong, Q. Chen, M. He, X. Sun, X. Wang, Cobalt ferrite–polyaniline heteroarchitecture: a magnetically recyclable photocatalyst with highly enhanced performances. J. Mater. Chem. 22, 17485–17493 (2012)CrossRefGoogle Scholar
  26. 26.
    E.E. Tanriverdi, A.T. Uzumcu, H. Kavas, A. Demir, A. Baykal, Conductivity study of polyaniline-cobalt ferrite (PANI-CoFe2O4) nanocomposite. Nano-Micro Lett. 3(2), 99–107 (2011)CrossRefGoogle Scholar
  27. 27.
    N.E. Kazantseva, Y.I. Bespyatykha, I. Sapurinab, J. Stejskalc, J. Vilcakova, P. Sahad, Magnetic materials based on manganese–zinc ferrite with surface-organized polyaniline coating. J. Magn. Magn. Mater. 301, 155–165 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    O. Yavuz, M.K. Ram, M. Aldissi, P. Poddar, S. Hariharan, Synthesis and the physical properties of MnZn ferrite and NiMnZn ferrite–polyaniline nanocomposite particles. J. Mater. Chem. 15, 810–817 (2005)CrossRefGoogle Scholar
  29. 29.
    J. Jiang, L. Ai, L.C. Li, Synthesis and magnetic performance of polyaniline/Mn–Zn ferrite nanocomposites with intrinsic conductivity. J. Mater. Sci. 44, 1024–1028 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    J.C. Chiang, A.G. Mac Diarmid, ‘Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime. Synth. Met. 13, 193–205 (1986)CrossRefGoogle Scholar
  31. 31.
    R.W. Gumbs, Synthesis of electrically conductive vinyl copolymers. Synth. Metals 64(1), 27–31 (1994)Google Scholar
  32. 32.
    J.A. Konklin, T.M. Su, S.C. Huang, R.B. Kanker, in Handbook of conducting polymers, ed. by T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds eds. (Marcel Dekker, New York, 1998), p. 945Google Scholar
  33. 33.
    F. Mohammad, in Handbook of advanced electronic and photonic materials and devices, ed. by H.S. Nalwa (Academic, New York, 2000), vol. 8, p. 321Google Scholar
  34. 34.
    N.J. Pinto, P.L. Carrion, A.M. Ayala, M. Ortiz-Macriales, Synth. Metals, 148, 271 (2005)Google Scholar
  35. 35.
    S.N. Rafeeq, M.M. Mukhils, M.A. Sulaiman, Magnetic and dielectric properties of CoFe2O4 and CoxZn1–xFe2O4 nanoparticles synthesized using sol–gel method. J Magn 22(3), 406–413 (2017)CrossRefGoogle Scholar
  36. 36.
    M. Nagaraja, J. Pattar, N. Shashanka, J. Manjannac, Y. Kamadac, K. Rajannab, H.M. Mahesh, Electrical, structural and magnetic properties of polyaniline/pTSA-TiO2 nanocomposites. Synth. Met. 159, 718–722 (2009)CrossRefGoogle Scholar
  37. 37.
    G. Dixit, J.P. Singh, R.C. Srivastava, A. Gupta, Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian J. Pure Appl. Phys. 48, 287–291 (April 2010)Google Scholar
  38. 38.
    R. Ratheesh, K. Viswanathan, Electrical conductivity studies on para toluene sulphonic acid doped polyaniline. Physics. 3(11), ISSN-2249-555X (2013).Google Scholar
  39. 39.
    P. Saini, M. Arora, Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes (National Physical Laboratory, New Delhi, 2012)CrossRefGoogle Scholar
  40. 40.
    V.J. Babu, S. Vempati, S. Ramakrishna, Conducting polyaniline-electrical charge transportation. Mater. Sci. Appl. 4, 1–10 (2013)Google Scholar
  41. 41.
    H.-S. Xu, Z.-Y. Cheng, Q.M. Zhang, P.-C. Wang, A.G. Macdiarmid, Conduction behavior of doped poly-aniline films at high current density regime. J. Polym. Sci. Part B 37(20), 2845–2850 (1999)CrossRefGoogle Scholar
  42. 42.
    R. Ratheesh, K. Viswanathan, Chemical polymerization of aniline using paratoluene sulphonic acid. J. Appl. Phys. (2014)Google Scholar
  43. 43.
    Jump up ^ Davis, E. A.; Mott, N. F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. A. 22(179), 903–922 (1970)ADSCrossRefGoogle Scholar
  44. 44.
    A.S. Sarac, M. Ates, B. Kilic, Electrochemical impedance spectroscopic study of polyaniline on platinum, glassy carbon and carbon fiber microelectrodes. Int. J. Electrochem. Sci. 3, 777–786 (2008)Google Scholar
  45. 45.
    J. Alam, U. Riaz, S. Ahmad, Effect of ferro-fluid concentration on electrical and magnetic properties of the Fe3O4/PANI nanocomposites. J. Magn. Magn. Mater. 314(2), 93–99 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    F. Sauzedde, A. Esmissari, C. Pichot, Hydrophilic magnetic polymer latexes. 1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. Colloid. Polym. Sci. 277, 846 (1999)CrossRefGoogle Scholar
  47. 47.
    L. Li, H. Qiu, H. Qian, B. Hao, X. Liang, Controlled synthesis of the poly(N-methylaniline)/Zn0.6Mn0.2Ni0.2Fe2O4 composites and its electrical-magnetic property. J. Phys. Chem. C 114, 6712 (2010)CrossRefGoogle Scholar
  48. 48.
    J. Jiang, L. Li, F. Xua, Polyaniline-LiNi ferrite core-shell composite: preparation, characterization and properties. Mater. Sci. Eng. A 456, 300–304 (2007)CrossRefGoogle Scholar
  49. 49.
    A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum Measur 19, 377–382 (1970)CrossRefGoogle Scholar
  50. 50.
    W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33–36 (1974)CrossRefGoogle Scholar
  51. 51.
    H.J. Kwon, Y. Shin, J.H. Oh, The microwave absorbing and resonance phenomena of Y-type hexagonal ferrite microwave absorbers. J. Appl. Phys. 75(10), (1994)Google Scholar
  52. 52.
    M. Gholampoor, F. Movassagh-Alangh, H. Salimkhani, Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method. Solid State Sci. (2017). Google Scholar
  53. 53.
    S.K. Dhawan, A. Ohlan, K. Singh,” Designing of nano composites of conducting polymers for EMI shielding. National Physical Laboratory (CSIR), New Delhi, 110 012, India (2011)Google Scholar
  54. 54.
    C.K. Das, A. Mandal, Microwave absorbing properties of DBSA-doped Polyaniline/BaTiO3-Ni0.5Zn0.5Fe2O4 nanocomposites. J. Mater. Sci. Res. 1, 1 (2012)Google Scholar
  55. 55.
    K. Ishino, Y. Narumiya, Development of magnetic ferrites: control and application of losses. Ceram. Bull. 66, 1469–1474 (1987)Google Scholar
  56. 56.
    D.A. Dimitrov, G.M. Wysin, Magnetic properties of spherical fcc clusters with radial surface anisotropy. Phys. Rev. B 51, 11947–11950 (1995)ADSCrossRefGoogle Scholar
  57. 57.
    V.P. Shilov, J.C. Bacri, F. Gazeau, F. Gendron, R. Perzynski, Y.L. Raikher, Ferromagnetic resonance in ferrite nanoparticles with uniaxial surface anisotropy. J. Appl. Phys. 85, 6642.1–6642.6 (1999)CrossRefGoogle Scholar
  58. 58.
    F. Movassagh-Alanagh, A. Bordbar-Khiabani, A. Ahangari-Asl, Three-phase PANI@nano-Fe3O4@CFs heterostructure: fabrication, characterization and investigation of microwave absorption and EMI shielding of PANI@nano-Fe3O4@CFs/epoxy hybrid composite. Compos. Sci. Technol. (2017). Google Scholar
  59. 59.
    N.F. Colaneri, L.W. Shacklette, IEEE T. Instrum. Meas. 41 (1992)Google Scholar
  60. 60.
    J.C. Wang, C.S. Xiang, Q. Liu, Y.B. Pan, J.K. Guo, Adv. Funct. Mater. 18(19), 2995–3002 (2008)CrossRefGoogle Scholar
  61. 61.
    P.B. Jana, A.K. Mallick, S.K. De, IEEE T. Electromagn. C 34(4), 478–481 (1992)CrossRefGoogle Scholar
  62. 62.
    Y.K. Hong, C.Y. Lee, C.K. Jeong, D.E. Lee, K. Kim, J. Joo, Rev. Sci. Instrum. 74(2), 1098–1102 (2003)ADSCrossRefGoogle Scholar
  63. 63.
    M. Bayat, H. Yang, F.K. Ko, D. Michelson, A. Mei, Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polymer 55, 936–943 (2014)CrossRefGoogle Scholar
  64. 64.
    M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013)CrossRefGoogle Scholar
  65. 65.
    A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan, Microwave absorption behavior of core–shell structured poly (3, 4-ethylenedioxy thiophene)-barium ferrite nanocomposites. ACS Appl. Mater. Interf. 2, 927–933 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mukhils M. Ismail
    • 1
  • Sewench N. Rafeeq
    • 1
  • Jameel M. A. Sulaiman
    • 1
    • 2
  • Avinandan Mandal
    • 3
    • 4
  1. 1.Department of Applied SciencesUniversity of TechnologyBaghdadIraq
  2. 2.College of DentistryUniversity of MosulMosulIraq
  3. 3.Materials Science CenterIndian Institute of TechnologyKharagpurIndia
  4. 4.Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdaoChina

Personalised recommendations