Applied Physics A

, 124:387 | Cite as

Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol–gel protocol

  • Surbhi Verma
  • Saruchi Rani
  • Sushil Kumar


Tetragonal zirconia quantum dots (t-ZrO2 QDs) in silica matrix with different compositions (x)ZrO2–(100 − x)SiO2 were fabricated by a modified sol–gel protocol. Acetylacetone was added as a chelating agent to zirconium propoxide to avoid precipitation. The powders as well as thin films were given thermal treatment at 650, 875 and 1100 °C for 4 h. The silica matrix remained amorphous after thermal treatment and acted as an inert support for zirconia quantum dots. The tetragonal zirconia embedded in silica matrix transformed into monoclinic form due to thermal treatment ≥ 1100 °C. The stability of tetragonal phase of zirconia is found to enhance with increase in silica content. A homogenous dispersion of t-ZrO2 QDs in silica matrix was indicated by the mapping of Zr, Si and O elements obtained from scanning electron microscope with energy dispersive X-ray analyser. The transmission electron images confirmed the formation of tetragonal zirconia quantum dots embedded in silica. The optical band gap of zirconia QDs (3.65–5.58 eV) was found to increase with increase in zirconia content in silica. The red shift of PL emission has been exhibited with increase in zirconia content in silica.



Authors gratefully acknowledge University Grants Commission, New Delhi, Govt. of India, for financial assistance in the form of major research project (File no. 42–803/2013(SR) dated 25.03.2013).


  1. 1.
    C.J. Brinker, G.W. Scherrer, S.-G. Science, The Physics and Chemistry of Sol–Gel Processing (Academic Press, San Diego, 1990), pp. 1–18Google Scholar
  2. 2.
    A.J. Burgraaf, K. Keizer, Synthesis of inorganic membranes, in Inorganic Membranes: Synthesis, Characteristics and Applications, ed. by R. R. Bhave (Van Nordstrand-Reinhold, New York, 1991), pp. 10–63CrossRefGoogle Scholar
  3. 3.
    A.E. Yoldas, Technological significance of sol-gel process and process-induced variations in sol-gel materials and coatings. J. Sol Gel. Sci. Technol. 1, 65–77 (1993)CrossRefGoogle Scholar
  4. 4.
    T. Lopez, M. Asomoza, L. Razo, R. Gomez, Study of the formation of silicoaluminates by the sol-gel method by means IR, DTA and TGA, J. Non-Cryst. Solids 108, 45–48 (1989)Google Scholar
  5. 5.
    T. Lopez, R. Gomez, Catalyst doped sol-gel materials, in Sol-Gel Optics: Processing and Applications, ed. by L. C. Klein (Kluwer Academic Publishers, Norwell, 1994), pp. 345–371CrossRefGoogle Scholar
  6. 6.
    C. Sanchez, J. Livage, Sol-gel chemistry from metal alkoxide precursors. New J. Chem. 4, 513–521 (1990)Google Scholar
  7. 7.
    T. Ahmad, O. Mamat, The development and characterization of zirconia-silica sand nanoparticles composites. World J. Nano Sci. Eng. 1, 7–14 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Z.A. Omran, Crystal structure, surface acidity, surface area, catalytic activity and electrical conductivity behaviour of SiO2–ZrO2 system. Commun. Fac. Scit. Univ. Ank. Ser. C 40, 31–44 (1994)Google Scholar
  9. 9.
    B. Jongsomjit, S. Kittiruangrayub, P. Praserthdam, Study of cobalt dispersion onto the mixed nano-SiO2–ZrO2 supports and its application as a catalytic phase. Mat. Chem. Phys. 105, 14–19 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Araki, Y. Kiyohara, S. Imasaka, S. Tanaka, Y. Miyake, Preparation and pervaporation properties of silica–zirconia membranes. Desalination 266, 46–50 (2011)CrossRefGoogle Scholar
  11. 11.
    G. Cao, Nanostructured and Nanomaterials (Imperial College Press, London, 2004), pp. 185–195CrossRefGoogle Scholar
  12. 12.
    L.P. Borilo, L.N. Spivakova, Synthesis and characterization of ZrO2 thin films. Am. J. Mater. Sci. 2(4), 119–124 (2012)CrossRefGoogle Scholar
  13. 13.
    G.T. Mamott, P. Barnes, S.E. Tarling, S.L. Jones, C.J. Norman, Dynamic studies of zirconia crystallization. J. Mater. Sci. 26, 4054–4061 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    D.R. Acosta, O. Novaro, T. Lopez, R. Gomez, Crystalline phases of sol–gel ZrO2 in the ZrO2-SiO2 system: differential thermal analysis and electron microscopy studies. J. Mater. Res. 10, 1397–1402 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    D.A. Ward, E.I. Ko, Synthesis and structural transformation of zirconia aerogels. Chem. Mater. 5, 956–969 (1993)CrossRefGoogle Scholar
  16. 16.
    T. Lopez, J. Navarrete, R. Gomez, O. Novaro, F. Figueras, H. Armendariz, Preparation of sol-gel sulfated ZrO2–SiO2 and characterization of its surface acidity. Appl. Catal. A 125, 217–232 (1995)CrossRefGoogle Scholar
  17. 17.
    R. Gomez, T. Lopez, X. Bokhimi, E. Muñoz, J.L. Boldu, O. Novaro, Dehydroxylation and the crystalline phases in sol–gel zirconia. J. Sol Gel. Sci. Technol. 11, 309–319 (1998)CrossRefGoogle Scholar
  18. 18.
    Q. Ge, Qinwen, Synthesis and characterization of mesoporous zirconia nanocomposite using self-assembled block copolymer template. Graduate Theses and Dissertations. 12616 (2012)Google Scholar
  19. 19.
    A.O. Bianchi, M. Campanati, P. Maireles-Torres, E. Rodríguez Castellon, A. Jimenéz López, A. Vaccari, Si/Zr mesoporous catalysts for the vapour phase synthesis of alkylindoles. Appl. Catal. A 220, 105–112 (2001)CrossRefGoogle Scholar
  20. 20.
    F. Gonella, G. Matter, P. Mazzoldi, Structural and optical properties of silver-doped zirconia and mixed zirconia–silica matrices obtained by sol–gel processing. Chem. Mater. 11, 814–821 (1991)CrossRefGoogle Scholar
  21. 21.
    R. Gomez, F. Tzompantzi, T. Lopez, O. Navaro, ZrO2–SiO2 mixed oxides as supports for platinum catalysts. React. Kinet. Catal. Lett. 53(2), 245–251 (1994)CrossRefGoogle Scholar
  22. 22.
    S. Damyanova, L. Petrov, M.A. Centeno, P. Grange, Characterization of molybdenum hydrodesulfurization catalysts supported on ZrO2–Al2O3 and ZrO2–SiO2 carriers. Appl. Catal. A 224, 271–284 (2002)CrossRefGoogle Scholar
  23. 23.
    K. Kamiya, S. Sakka, Y. Tatemichi, Preparation of glass fibres of the ZrO2–SiO2 and Na2O–ZrO2–SiO2 systems from metal alkoxides and their resistance to alkaline solution. J. Mater. Sci. 15, 1765–1771 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    S. Surbhi, S. Kumar, Thermal evolution of mixed oxides of zirconia-silica prepared by sol-gel route, in Physics of semiconductor devices, (Environmental Science and Engineering, Springer International Publishing, Switzerland, 2014), pp. 749–751Google Scholar
  25. 25.
    S.M. Reda, Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators. Acta Mater. 56(2), 259–264 (2008)CrossRefGoogle Scholar
  26. 26.
    A. Samavati, Z. Samavati, A.F. Ismail, M.H.D. Othman, M.A. Rahman, A.K. Zulhairun, Efficient visible photoluminescence from self-assembled Ge QDs embedded in silica matrix. Chin. Phys. Lett. 34(6), 068102 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    V.S. Gorelik, Y.P. Voinov, G.A. Emel’chenko, V.M. Masalov, Optical properties of a carbon-zirconia quantum-dot photonic crystal. Inorg. Mater. 46(5), 505–509 (2010)CrossRefGoogle Scholar
  28. 28.
    X. Xin, Z. Lü, X. Huang, X. Sha, Y. Zhang, K. Chen, N. Ai, R. Zhu, W. Su, Solid oxide fuel cells with dense yttria-stabilized zirconia electrolyte membranes fabricated by a dry pressing process. J. Power Sourc. 160(2), 1221–1224 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    S. Hao, C. Wang, T. Liu, Z. Mao, Z. Mao, J. Wang, Fabrication of nanoscale yttria stabilized zirconia for solid oxide fuel cell. Int. J. Hydrogen Energy 42(50), 29949–29959 (2017)CrossRefGoogle Scholar
  30. 30.
    W.C. Maskell, D.J.L. Brett, N.P. Brandon, Thick-film amperometric zirconia oxygen sensors: influence of cobalt oxide as a sintering aid. Meas. Sci. Technol. 25(6), 065104 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    N. Miura, T. Sato, S. Anggraini, H. Ikeda, S. Zhuiykov, A review of mixed-potential type zirconia-based gas sensors. Ionics 20(7), 901–925 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Surbhi, S. Kumar, Effect of annealing temperature on structural, photoluminescence and thermal properties of nanosized zirconium silicates. Adv. Sci. Lett. 20, 1504–1508 (2014)CrossRefGoogle Scholar
  33. 33.
    D.H. Aguilar, L.C. Torres-Gonzalez, L.M. Torres-Martinez, T. Lopez, P. Quintana, A study of the crystallization of ZrO2 in the sol–gel system: ZrO2–SiO2. J. Solid State Chem. 158, 349–357 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Ma, P. Jia, X. Li, N. Liu, Y. Ma, Synthesis of the ZrO2–SiO2 microspheres as a mesoporous candidate material. J. Porous Mater. 19, 1047–1052 (2012)CrossRefGoogle Scholar
  35. 35.
    N. Agoudjil, N. Benmouhoub, L. Labot, Synthesis and characterization of inorganic membranes and applications. Desalination 184, 65–69 (2005)CrossRefGoogle Scholar
  36. 36.
    M. Popa, J.M. Claderón-Moreno, L. Popescu, M. Kakihana, R. Torecillas, Crystallization of gel-derived and quenched glasses in the ternary oxide Al2O3–ZrO2–SiO2 system. J. Non-Cryst. Solids 297, 290–300 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    F. Monte, W. Larsen, J.D. Mackenzie, Stabilization of tetragonal ZrO2 in ZrO2–SiO2 binary oxides. J. Am. Ceram. Soc. 83(3), 628–634 (2000)CrossRefGoogle Scholar
  38. 38.
    S.W. Lee, R.A. Condrate, Sr, The infrared and Raman spectra of SiO2–ZrO2 glasses prepared by a sol-gel process. J. Mater. Res. 23, 2951–2959 (1988)ADSGoogle Scholar
  39. 39.
    J. Coates, Interpretation of infrared spectra, a practical approach, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, Chichester, 2000), pp. 10815–10837Google Scholar
  40. 40.
    R. Hogg, T.W. Healy, D.W. Fuerstenau, Mutual coagulation of colloidal dispersions. Trans. Faraday Soc. 62, 1638–1651 (1966)CrossRefGoogle Scholar
  41. 41.
    A. García Murillo, F.J. Carrilo Romo, A.M. Torres Huerta, M.A. Domínguez Crespo, E. Ramírez, H. Meneses, A. Terrones, Flores Vela, Microstructural evolution of the system Ni–ZrO2–SiO2 synthesized by the sol–gel process. J. Alloys Compd. 495, 574–577 (2010)CrossRefGoogle Scholar
  42. 42.
    J.C. Garcia, L.M.R. Scolfaro, A.T. Lino, V.N. Freire, G.A. Farias, C.C. Silva, H.W. Leite Alves, S.C.P. Rodrigues, E.F. Da Silva Jr., Structural, electronic, and optical properties of ZrO2 from ab initio calculations. J. Appl. Phys. 100, 104103 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    H.Q. Cao, X.Q. Qiu, B. Luo, Y. Liang, Y.H. Zhang, R.Q. Tan, M.J. Zhao, Q.M. Zhu, Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires. Adv. Funct. Mater. 14, 243–246 (2004)CrossRefGoogle Scholar
  44. 44.
    A. Emeline, G.V. Kataeva, A.S. Litke, A.V. Rudakova, V.K. Ryabchuk, N. Serpone, Spectroscopic and photoluminescence studies of a wide band gap insulating material: powdered and colloidal ZrO2 sols. Langmuir 14, 5011–5022 (1998)CrossRefGoogle Scholar
  45. 45.
    I. Vaizoğullar, A. Balci, M. Uğurlu, Synthesis of ZrO2 and ZrO2/SiO2 particles and photocatalytic degradation of methylene blue. Indian J. Chem. 54A, 1434–1439 (2015)Google Scholar
  46. 46.
    A. K. Singh, U.T. Nakate, Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia. Sci. World J. 2014, Article ID. 349457 (2014)Google Scholar
  47. 47.
    U.K. Patel, K.H. Patel, K.V. Chauhan, A.K. Chawla, S.K. Rawal, Investigation of various properties for zirconium oxide films synthesized by sputtering. Procedia Technol 23, 336–343 (2016)CrossRefGoogle Scholar
  48. 48.
    S.B. Xie, E. Iglesia, A.T. Bell, Water-assisted tetragonal-to-monoclinic phase transformation of ZrO2 at low temperatures. Chem. Mater. 12(8), 2442–2447 (2000)CrossRefGoogle Scholar
  49. 49.
    M. Stoia, P. Barvinschi, F. Barvinschi, Structural and morphologic characterization of zirconia–silica nanocomposites prepared by a modified sol–gel method. J. Cryst. Growth 401, 462–468 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Materials Science Lab, Department of PhysicsChaudhary Devi Lal UniversitySirsaIndia

Personalised recommendations