Applied Physics A

, 124:379 | Cite as

The effect of barrier layer conditions on the electrodeposition efficiency and magnetic properties of Fe nanowire arrays

  • S. F. Akhtarianfar
  • A. Ramazani
  • M. Almasi-Kashi
  • A. H. Montazer
Article
  • 56 Downloads

Abstract

Fabrication of different nanostructures based on template-assisted methods has become conventional, due to their numerous potential applications. In this paper, Fe nanowire arrays (NWAs) were fabricated using a pulsed electrodeposition in porous anodic alumina (PAA) templates. The effect of alumina barrier layer conditions such as barrier layer temperature (BLT) and Cu pre-plating at the dendritic sections of pores on the electrodeposition efficiency (EE) and magnetic properties of Fe NWAs in two pH regimes (2.6 and 4.0) has been investigated. At pH 4.0, BLT was changed from ~ 4 to ~ 32 °C, leading to an EE of approximately 60% for BLT ~ 24 °C. Moreover, to overcome the problem of low EE ~ 2% at the pH of 2.6, Cu pre-plating was performed with deposition current densities of 25 and 35 mA/cm2. This procedure increased the EE up to about 40%, providing a promising approach to enhance the EE in the fabrication of Fe NWAs. Furthermore, a nearly constant trend of magnetic properties was observed for highly crystalline Fe NWs.

Abbreviations

NWAs

Nanowire arrays

PAA

Porous anodic alumina

BLT

Barrier layer temperature

EE

Electrodeposition efficiency

Ms

Saturation magnetic moment

Notes

Acknowledgements

The authors would like to thank the University of Kashan for supporting this work by Grant no. 159023/32.

Funding

This study was funded by the University of Kashan (Grant no. 159023/32).

Compliance with Ethical Standards

By submitting the manuscript, the authors understand that the material presented in this manuscript has not been published before, nor has it been submitted for publication to another journal. The corresponding author attests that this study has been approved by all the co-authors concerned.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Q. Liu, C. Gao, J. Xiao, D. Xue, Size effects on magnetic properties in Fe0.68 Ni0.32 alloy nanowire arrays, J. Magn. Magn. Mater. 260, 151–155 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    P.D. McGary, L. Tan, J. Zou, B.J. Stadler, P.R. Downey, A.B. Flatau, Magnetic nanowires for acoustic sensors. J. Appl. Phys. 99, 08B310 (2006)CrossRefGoogle Scholar
  3. 3.
    M. Vázquez, Soft magnetic wires. Physica B 299, 302–313 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    V. Haehnel, S. Fähler, P. Schaaf, M. Miglierini, C. Mickel, L. Schultz, H. Schlörb, Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes. Acta Mater. 58, 2330–2337 (2010)CrossRefGoogle Scholar
  5. 5.
    J. Smyth, S. Schultz, D. Kern, H. Schmid, D. Yee, Hysteresis of submicron permalloy particulate arrays. J. Appl. Phys. 63, 4237–4239 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    J. Wong, A. Scherer, M. Todorovic, S. Schultz, Fabrication and characterization of high aspect ratio perpendicular patterned information storage media in an Al2O3/GaAs substrate. J. Appl. Phys. 85, 5489–5491 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    P. Vavassori, V. Metlushko, M. Grimsditch, B. Ilic, P. Neuzil, R. Kumar, Magneto-optical studies of superlattice dot arrays. Phys. Rev. B 61, 5895 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    C. Moreau, J. Caballero, R. Loloee, W. Pratt Jr., N.O. Birge, Fabrication and magnetic characterization of single domain Co91Fe9 nanostructures. J. Appl. Phys. 87, 6316–6318 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. Ravet, C. Chappert, N. Bardou, B. Bartenlian, P. Veillet, Study of large area high density magnetic dot arrays fabricated using synchrotron radiation based X-ray lithography. J. Vac. Sci. Technol. B 13, 2787–2791 (1995)CrossRefGoogle Scholar
  10. 10.
    C. Pike, A. Fernandez, An investigation of magnetic reversal in submicron-scale Co dots using first order reversal curve diagrams. J. Appl. Phys. 85, 6668–6676 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    A. Fernandez, M. Gibbons, M. Wall, C. Cerjan, Magnetic domain structure and magnetization reversal in submicron-scale Co dots. J. Magn. Magn. Mater. 190, 71–80 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    L. Kong, L. Zhuang, M. Li, B. Cui, S.Y. Chou, Fabrication, writing, and reading of 10 Gbits/in2 longitudinal quantized magnetic disks with a switching field over 1000 Oe. Jpn. J. Appl. Phys. 37, 5973–5975 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Y.M. Cho, W.K. Choo, H. Kim, D. Kim, Y. Ihm, Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1−x (Co0.5 Fe0.5) × O thin films. Appl. Phys. Lett. 80, 3358–3360 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    S. Wirth, S. Von Molnar, M. Field, D. Awschalom, Magnetism of nanometer-scale iron particles arrays. J. Appl. Phys. 85, 5249–5254 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    C.R. Martin, Membrane-based synthesis of nanomaterials. Chem. Mater. 8, 1739–1746 (1996)CrossRefGoogle Scholar
  16. 16.
    J. Montero-Moreno, M. Belenguer, M. Sarret, C. Müller, Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques. Electrochim. Acta 54, 2529–2535 (2009)CrossRefGoogle Scholar
  17. 17.
    H. Asoh, S. Ono, T. Hirose, M. Nakao, H. Masuda, Growth of anodic porous alumina with square cells. Electrochim. Acta 48, 3171–3174 (2003)CrossRefGoogle Scholar
  18. 18.
    I. Vrublevsky, A. Jagminas, J. Schreckenbach, W.A. Goedel, Electronic properties of electrolyte/anodic alumina junction during porous anodizing. Appl. Surf. Sci. 253, 4680–4687 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    K. Nielsch, F. Müller, A.-P. Li, U. Gösele, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 12, 582–586 (2000)CrossRefGoogle Scholar
  20. 20.
    M. Michalska-Domańska, M. Norek, W.J. Stępniowski, B. Budner, Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—a comparative study with the AAO produced on high purity aluminum. Electrochim. Acta 105, 424–432 (2013)CrossRefGoogle Scholar
  21. 21.
    C. Sousa, D. Leitao, M. Proenca, A. Apolinario, J. Correia, J. Ventura, J. Araujo, Tunning pore filling of anodic alumina templates by accurate control of the bottom barrier layer thickness. Nanotechnology 22, 315602 (2011)CrossRefGoogle Scholar
  22. 22.
    J. Azevedo, C. Sousa, J. Ventura, A. Apolinario, A. Mendes, J. Araujo, Ultra-long Fe nanowires by pulsed electrodeposition with full filling of alumina templates. Mater. Res. Express 1, 015028 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    W. Cheng, M. Steinhart, U. Gösele, R.B. Wehrspohn, Tree-like alumina nanopores generated in a non-steady-state anodization. J. Mater. Chem. 17, 3493–3495 (2007)CrossRefGoogle Scholar
  24. 24.
    M. Ghaffari, A. Ramazani, M.A. Kashi, Improvement in the microstructure and magnetic properties in arrays of dc pulse electrodeposited Co nanowires induced by Cu pre-plating. J. Phys. D Appl. Phys. 46, 295002 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Yin, J. Li, W. Jian, A. Bennett, J. Xu, Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl. Phys. Lett. 79, 1039–1041 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    M. Sun, G. Zangari, R.M. Metzger, Cobalt island arrays with in-plane anisotropy electrodeposited in highly ordered alumite. IEEE Trans. Magn. 36, 3005–3008 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    M.S. Salem, P. Sergelius, R. Zierold, J.M.M. Moreno, D. Görlitz, K. Nielsch, Magnetic characterization of nickel-rich NiFe nanowires grown by pulsed electrodeposition. J. Mater. Chem. 22, 8549–8557 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Krimpalis, O.-G. Dragos, A.-E. Moga, N. Lupu, H. Chiriac, Magnetization processes in electrodeposited NiFe/Cu multilayered nanowires. J. Mater. Res. 26, 1081–1090 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    H. Hu, H. Chen, J. Chen, G. Wu, Magnetic properties of (110)-and (200)-oriented Fe-nanowire arrays. Phys. B 368, 100–104 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    A. Ramazani, M.A. Kashi, M. Alikhani, S. Erfanifam, Optimized microstructure and magnetic properties in arrays of ac electrodeposited Co nanowires induced by the continuous and pulse electrodeposition. J. Phys. D Appl. Phys. 40, 5533 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    K.M. Razeeb, F.M. Rhen, S. Roy, Magnetic properties of nickel nanowires: effect of deposition temperature. J. Appl. Phys. 105, 083922 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    A. Rashidi, A. Amadeh, The effect of current density on the grain size of electrodeposited nanocrystalline nickel coatings. Surf. Coat. Technol. 202, 3772–3776 (2008)CrossRefGoogle Scholar
  33. 33.
    C. Cui, B. Wang, W. Yang, J. Sun, Effect of deposition voltage and Co2+ concentration on the texture and magnetic properties of Co nanowire arrays, J. Crystal Growth 324, 168–171 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    M. Almasi Kashi, A. Ramazani, M. Ghaffari, V. Isfahani, The effect of growth rate enhancement on the magnetic properties and microstructures of ac electrodeposited Co nanowires using non-symmetric reductive/oxidative voltage. J. Cryst. Growth 311, 4581–4586 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    J. Azevedo, C. Sousa, A. Mendes, J. Araújo, Influence of the rest pulse duration in pulsed electrodeposition of Fe nanowires. J. Nanosci. Nanotechnol. 12, 9112–9117 (2012)CrossRefGoogle Scholar
  36. 36.
    A. Ramazani, M.A. Kashi, V.B. Isfahani, M. Ghaffari, The influence of crystallinity enhancement on the magnetic properties of ac electrodeposited Fe nanowires. Appl. Phys. A 98, 691–697 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    D. Leitao, A. Apolinario, C. Sousa, J. Ventura, J. Sousa, M. Vazquez, J. Araujo, Nanoscale topography: a tool to enhance pore order and pore size distribution in anodic aluminum oxide. J. Phys. Chem. C 115, 8567–8572 (2011)CrossRefGoogle Scholar
  38. 38.
    M. Almasi Kashi, A. Ramazani, A. Esmaeily, Magnetostatic interaction investigation of CoFe alloy nanowires by first-order reversal-curve diagrams. IEEE Trans. Magn. 49, 1167–1171 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Sui, B. Cui, L. Martınez, R. Perez, D.J. Sellmyer, Pore structure, barrier layer topography and matrix alumina structure of porous anodic alumina film. Thin Solid Films 406, 64–69 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    K. Nielsch, J. Choi, K. Schwirn, R.B. Wehrspohn, U. Gösele, Self-ordering regimes of porous alumina: the 10 porosity rule. Nano Lett. 2, 677–680 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    D.V. Kumar, S. Ayyagari, M. Prasad, Mechanical characteristics and electrochemical behaviour of electrodeposited nanocrystalline iron and iron-nickel alloy. Mater. Chem. Phys. 201, 26–34 (2017)CrossRefGoogle Scholar
  42. 42.
    F.E. Atalay, H. Kaya, S. Atalay, S. Tari, Influences of deposition time and pH on magnetic NiFe nanowires fabrication. J. Alloy. Compd. 469, 458–463 (2009)CrossRefGoogle Scholar
  43. 43.
    M. Noormohammadi, M. Moradi, Structural engineering of nanoporous alumina by direct cooling the barrier layer during the aluminum hard anodization. Mater. Chem. Phys. 135, 1089–1095 (2012)CrossRefGoogle Scholar
  44. 44.
    H. Venkatasetty, Electrodeposition of thin magnetic permalloy films. J. Electrochem. Soc. 117, 403–407 (1970)CrossRefGoogle Scholar
  45. 45.
    A. Montazer, A. Ramazani, M. Almasi, Kashi, Magnetically extracted microstructural development along the length of Co nanowire arrays: The interplay between deposition frequency and magnetic coercivity. J. Appl. Phys. 120, 113902 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    C. Sousa, D. Leitao, M. Proença, A. Apolinário, A. Azevedo, N. Sobolev, S. Bunyaev, Y.G. Pogorelov, J. Ventura, J. Araujo, Probing the quality of Ni filled nanoporous alumina templates by magnetic techniques. J. Nanosci. Nanotechnol. 12, 7486–7490 (2012)CrossRefGoogle Scholar
  47. 47.
    A.S. Goncharova, S.V. Sotnichuk, A.S. Semisalova, T.Y. Kiseleva, I. Sergueev, M. Herlitschke, K.S. Napolskii, A.A. Eliseev, Oriented arrays of iron nanowires: synthesis, structural and magnetic aspects., J. Sol Gel. Sci. Technol. 81, 1–6 (2016)Google Scholar
  48. 48.
    M. Irfan, U. Khan, W. Li, N. Adeela, K. Javed, X. Han, Magnetic investigations of post-annealed metallic Fe nanowires via electrodeposition method. Mater. Lett. 180, 235–238 (2016)CrossRefGoogle Scholar
  49. 49.
    R. Han, W. Li, W. Pan, M. Zhu, D. Zhou, F.-s. Li, 1D magnetic materials of Fe3 O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Sci. Rep. 4, 7493 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    B.D. Cullity, C.D. Graham, Introduction to magnetic materials (John Wiley & Sons, New Jersey 2011)Google Scholar
  51. 51.
    X. Huang, L. Li, X. Luo, X. Zhu, G. Li, Orientation-controlled synthesis and ferromagnetism of single crystalline Co nanowire arrays. J. Phys. Chem. C 112, 1468–1472 (2008)CrossRefGoogle Scholar
  52. 52.
    J. Xu, K. Wang, Pulsed electrodeposition of monocrystalline Ni nanowire array and its magnetic properties. Appl. Surf. Sci. 254, 6623–6627 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    D. AlMawlawi, N. Coombs, M. Moskovits, Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size. J. Appl. Phys. 70, 4421–4425 (1991)ADSCrossRefGoogle Scholar
  54. 54.
    G. Sharma, M.V. Pishko, C.A. Grimes, Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: effect of barrier layer. J. Mater. Sci. 42, 4738–4744 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    C.T. Sousa, A. Apolinario, D.C. Leitao, A.M. Pereira, J. Ventura, J.P. Araujo, Precise control of the filling stages in branched nanopores. J. Mater. Chem. 22, 3110–3116 (2012)CrossRefGoogle Scholar
  56. 56.
    A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications (Wiley, New York, 1980)Google Scholar
  57. 57.
    X. Zhang, G. Wen, Y. Chan, R. Zheng, X. Zhang, N. Wang, Fabrication and magnetic properties of ultrathin Fe nanowire arrays. Appl. Phys. Lett. 83, 3341–3343 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    S. Yang, H. Zhu, D. Yu, Z. Jin, S. Tang, Y. Du, Preparation and magnetic property of Fe nanowire array. J. Magn. Magn. Mater. 222, 97–100 (2000)ADSCrossRefGoogle Scholar
  59. 59.
    M. Ou, T. Yang, Y. Chen, Anisotropic magnetism and magnetoresistance in iron nanowire arrays. Chin. J. Phys. 47, 848–853 (2009)Google Scholar
  60. 60.
    X. Wang, C. Li, G. Chen, C. Peng, L. He, L. Yang, Synthesis and characterization of Fe nanowire arrays by AC electrodeposition in PAMs. Surf. Rev. Lett. 17, 419–423 (2010)CrossRefGoogle Scholar
  61. 61.
    J.B. Wang, X.Z. Zhou, Q.F. Liu, D.S. Xue, F.S. Li, B. Li, H.P. Kunkel, G. Williams, Magnetic texture in iron nanowire arrays. Nanotechnology 15, 485 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  2. 2.Department of PhysicsUniversity of KashanKashanIran

Personalised recommendations