Applied Physics A

, 124:394 | Cite as

Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor

  • Sarika Pal
  • Alka VermaEmail author
  • S. Raikwar
  • Y. K. Prajapati
  • J. P. Saini
Rapid communication


In this paper, graphene-coated black phosphorus at the metal surface for the detection of DNA hybridization event is numerically demonstrated. The strategy consists of placing the sensing medium on top of black phosphorus–graphene-coated SPR which interfaces with phosphate-buffered saline solution carrying single-stranded DNA. Upon hybridization with its complementary DNA, desorption of the nanostructures takes place and thus enables the sensitive detection of the DNA hybridization event. The proposed sensor exhibits a sensitivity (125 ο/RIU), detection accuracy (0.95) and quality factor (13.62 RIU−1) for complementary DNA. In comparison with other reported papers, our suggested sensor provides much better performance. Thus, this label-free DNA detection platform should spur off new interest towards the use of black phosphorus–graphene-coated SPR interfaces.





Attenuated total reflection


Black phosphorus




Concentration of adsorbed molecule


Deoxyribonucleic acid


Detection accuracy


Double-stranded DNA


Full width at half maximum






Molybdenum disulfide


Molybdenum diselenide




Operating wavelength


Phosphate-buffered saline


Quality factor




Refractive index


Refractive index unit


RI of sensing medium before hybridization


RI of sensing medium after DNA hybridization


RI change due to DNA




Single-stranded DNA


Surface plasmon resonance


Surface plasmon wave


Transition metal dichalcogenides




Transverse magnetic


Tungsten disulfide


Tungsten diselenide


Wave vector of evanescent wave


Wave vector of surface plasmon wave



This work is partially supported under Project no. 34/14/10/2017-BRNS/34285 by Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Government of India.


  1. 1.
    K. Tamersit, F. Djeffal, Double-gate graphene nanoribbon field-effect transistor for DNA and gas sensing applications: simulation study and sensitivity analysis. IEEE Sens. J. 16(11), 4180–4191 (2016)CrossRefGoogle Scholar
  2. 2.
    T.-J. Wang, C.-W. Tu, F.-K. Liu, Integrated-optic surface-plasmon-resonance biosensor using gold nanoparticles by bipolarization detection. IEEE J. Sel. Top. Quantum Electron. 11(2), 493–499 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    N.-F. Chiu, W.-C. Lee, T.-S. Jiang, Constructing a novel asymmetric dielectric structure toward the realization of high performance surface plasmon resonance biosensors. IEEE Sens. J. 13(9), 3483–3489 (2013)CrossRefGoogle Scholar
  4. 4.
    A. Madeira, E. Vikeved, A. Nilsson, B. Sjogren, P.E. Andrén, P. Svenningsson, Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry. Curr. Protoc. Protein Sci. 65, 19.21.1–19.21.9 (2011)Google Scholar
  5. 5.
    J. Majka, C. Speck, Analysis of protein-DNA interactions using surface plasmon resonance. Adv. Biochem. Eng. Biotechnol. 104, 13–36 (2007)Google Scholar
  6. 6.
    H.F. Teh, W.Y.X. Peh, X. Su, J.S. Thomsen, Characterization of protein-DNA interactions using surface plasmon resonance spectroscopy with various assay schemes. Biochemistry 46(8), 2127–2135 (2007)CrossRefGoogle Scholar
  7. 7.
    J.B. Maurya, Y.K. Prajapati, V. Singh, J.P. Saini, R. Tripathi, Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon. Opt. Commun. 359, 426–434 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)CrossRefGoogle Scholar
  9. 9.
    Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X.-Q. Dinh, J. Qian, S. He, P. Coquet, K.-T. Yong, Two-dimensional transition metal dichalcogenide enhanced phase-sensitive plasmonic biosensors: theoretical insight. J. Phys. Chem. C 121(11), 6282–6289 (2017)CrossRefGoogle Scholar
  10. 10.
    L. Wu, Y. Jia, L. Jiang, J. Guo, X. Dai, Y. Xiang, D. Fan, Sensitivity improved spr biosensor based on the MoS2/graphene-aluminum hybrid structure. J. Lightwave Technol. 35(1), 82–87 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    J.B. Maurya, Y.K. Prajapati, A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2-graphene. Opt. Quantum Electron. 48(5), 1–12 (2016)CrossRefGoogle Scholar
  12. 12.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    L. Wu, H.S. Chu, W.S. Koh, E.P. Li, Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18, 14395–14400 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475–4475 (2014)Google Scholar
  15. 15.
    S.D. Sarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83(2), 407–470 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    M. Rahman, M. Anower, M. Hasan, M. Hossain, M. Haque, Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Opt. Commun. 396, 36–43 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    S.Y. Cho, Y. Lee, H.J. Koh, H. Jung, J.S. Kim, H.W. Yoo, J. Kim, H.T. Jung, Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28(32), 7020–7028 (2016)CrossRefGoogle Scholar
  18. 18.
    N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, J. Zhang, Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 138(1), 300–305 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Cai, G. Zhang, Y.W. Zhang, Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677–6682 (2016)CrossRefGoogle Scholar
  20. 20.
    L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, D. Fan, Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B 249, 542–548 (2017)CrossRefGoogle Scholar
  21. 21.
    J.B. Maurya, Y.K. Prajapati, V. Singh, J.P. Saini, R. Tripathi, Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer. Opt. Quantum Electron. 47, 3599–3611 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Cai, G. Zhang, Y.-W. Zhang, Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J. Phys. Chem. C 119(24), 13929–13936 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Karimi, R. Yusof, R. Rahmani, H. Hosseinpour, M.T. Ahmadi, Development of solution-gated graphene transistor model for biosensors. Nanoscale Res. Lett. 9, 1–11 (2014)CrossRefGoogle Scholar
  24. 24.
    L. Diéguez, N. Darwish, M. Mir, E. Martinez, M. Moreno, J. Samitier, Effect of the refractive index of buffer solutions in evanescent optical biosensors. Sens. Lett. 7(5), 851–855 (2009)CrossRefGoogle Scholar
  25. 25.
    V. Ball, J.J. Ramsden, Buffer dependence of refractive index increments of protein solutions. Biopolymers 46, 489–492 (1998)CrossRefGoogle Scholar
  26. 26.
    L.J. Wang, G. Cao, T. Tu, H.O. Li, C. Zhou, X.J. Hao, Z. Su, G.C. Guo, H.W. Jiang, G.P. Guo, A graphene quantum dot with a single electron transistor as an integrated charge sensor. Appl. Phys. Lett. 97(26), 262113 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    A. Verma, A. Prakash, R. Tripathi, Performance analysis of graphene based surface plasmon resonance biosensors for detection of Pseudomonas-like bacteria. J. Opt. Quantum Electron. 47, 1197–1205 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sarika Pal
    • 1
  • Alka Verma
    • 2
    Email author
  • S. Raikwar
    • 3
  • Y. K. Prajapati
    • 4
  • J. P. Saini
    • 5
  1. 1.Department of Electronics and Communication EngineeringK.I.E.T Group of InstitutionsGhaziabadIndia
  2. 2.Department of Electronics EngineeringInstitute of Engineering and Rural TechnologyAllahabadIndia
  3. 3.Department of Electronics and Communication EngineeringBuldelkhand Institute of Engineering and TechnologyJhansiIndia
  4. 4.Department of Electronics and Communication EngineeringMotilal Nehru National Institute of TechnologyAllahabadIndia
  5. 5.Department of Electronics and Communication EngineeringNetaji Subhas Institute of Technology (NSIT)New DelhiIndia

Personalised recommendations