Electrical conductivity of high-purity germanium crystals at low temperature

Abstract

The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature (\({T_{\text{m}}}\)) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    C. Claeys, E. Simoen, Germanium-based Technologies from Materials to Devices, (Elsevier BV, Oxford, Amsterdam, 2007)

    Google Scholar 

  2. 2.

    B. Depuydt, A. Theuwis, I. Romandic, Mat. Sci. Semicon. Proc. 9, 437 (2006)

    Article  Google Scholar 

  3. 3.

    E.E. Haller, W.L. Hansen, F.S. Goulding, Adv. Phys. 30, 93 (1981)

    ADS  Article  Google Scholar 

  4. 4.

    E.E. Haller, W.L. Hansen, G.S. Hubbard, F.S. Goulding, IEEE Trans. Nucl. Sci. NS-23, 81 (1976)

    ADS  Article  Google Scholar 

  5. 5.

    W.L. Hansen, E.E. Haller, IEEE Trans. Nucl. Sci. NS-21, 251 (1973)

    ADS  Google Scholar 

  6. 6.

    C.S. Hung, J.R. Gliessman, Phys. Rev. 96–5, 1126 (1954)

    Google Scholar 

  7. 7.

    E.G.S. Paige, J. Phys. Chem. Solids 16, 207 (1960)

    ADS  Article  Google Scholar 

  8. 8.

    H. Fritzsche, Phys. Rev. 99–2, 406 (1955)

    Article  Google Scholar 

  9. 9.

    W.C. Dunlap, Phys. Rev. 79–2, 286 (1950)

    Article  Google Scholar 

  10. 10.

    M.B. Prince, Phys. Rev. 92–3, 681 (1953)

    Article  Google Scholar 

  11. 11.

    R. Wichner, S.P. Swierkowski, G.A. Armantrout, IEEE Trans. Nucl. Sci. NS-21, 273 (1974)

    ADS  Article  Google Scholar 

  12. 12.

    G. Yang, G.J. Wang, W.C. Xiang et al., J. Cryst. Growth 352, 43 (2012)

    ADS  Article  Google Scholar 

  13. 13.

    G. Yang, J. Govani, H. Mei et al., Cryst. Res. Technol. 53(4), 269 (2014)

    Article  Google Scholar 

  14. 14.

    G. Yang, D.M. Mei, J. Govai et al., Appl. Phys. A 113(1), 207 (2014)

    ADS  Article  Google Scholar 

  15. 15.

    J.Y.M. Lee, I.C. Cheng, Electrical properties of lightly doped polycrystalline silicon., J. Appl. Phys. 53–1, 490 (1982)

    ADS  Article  Google Scholar 

  16. 16.

    J.Y. Lee, F.Y. Wang, Microelectron. J. 17–5, 23 (1986)

    Article  Google Scholar 

  17. 17.

    G.E. Pike, C.H. Seager, J. Appl. Phys. 50–5, 3414 (1979)

    ADS  Article  Google Scholar 

  18. 18.

    J. Martinez, J. Piqueras, Solid State Electron. 23, 297 (1980)

    ADS  Article  Google Scholar 

  19. 19.

    D.A. Anderson, N. Apsley, Semicond. Sci. Technol. 1, 187 (1986)

    ADS  Article  Google Scholar 

  20. 20.

    E. Conwell, V.F. Weisskopf, Phys. Rev. 69–2, 258 (1946)

    Google Scholar 

  21. 21.

    N.C.-C. Lu, L. Gerzberg, C.-Y. Lu, J.D. Meindl, IEEE Trans. Electon Dev. 30–2, 137 (1983)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of the crystal growth group at The University of South Dakota. This work was supported by DOE DE-FG02-10ER46709, NSF OISE-1743790, NSF OIA-1738632 and the state of South Dakota.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gang Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Kooi, K., Wang, G. et al. Electrical conductivity of high-purity germanium crystals at low temperature. Appl. Phys. A 124, 381 (2018). https://doi.org/10.1007/s00339-018-1803-2

Download citation