Advertisement

Applied Physics A

, 124:381 | Cite as

Electrical conductivity of high-purity germanium crystals at low temperature

  • Gang Yang
  • Kyler Kooi
  • Guojian Wang
  • Hao Mei
  • Yangyang Li
  • Dongming Mei
Article

Abstract

The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature (\({T_{\text{m}}}\)) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.

Notes

Acknowledgements

The authors would like to thank the members of the crystal growth group at The University of South Dakota. This work was supported by DOE DE-FG02-10ER46709, NSF OISE-1743790, NSF OIA-1738632 and the state of South Dakota.

References

  1. 1.
    C. Claeys, E. Simoen, Germanium-based Technologies from Materials to Devices, (Elsevier BV, Oxford, Amsterdam, 2007)Google Scholar
  2. 2.
    B. Depuydt, A. Theuwis, I. Romandic, Mat. Sci. Semicon. Proc. 9, 437 (2006)CrossRefGoogle Scholar
  3. 3.
    E.E. Haller, W.L. Hansen, F.S. Goulding, Adv. Phys. 30, 93 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    E.E. Haller, W.L. Hansen, G.S. Hubbard, F.S. Goulding, IEEE Trans. Nucl. Sci. NS-23, 81 (1976)ADSCrossRefGoogle Scholar
  5. 5.
    W.L. Hansen, E.E. Haller, IEEE Trans. Nucl. Sci. NS-21, 251 (1973)ADSGoogle Scholar
  6. 6.
    C.S. Hung, J.R. Gliessman, Phys. Rev. 96–5, 1126 (1954)Google Scholar
  7. 7.
    E.G.S. Paige, J. Phys. Chem. Solids 16, 207 (1960)ADSCrossRefGoogle Scholar
  8. 8.
    H. Fritzsche, Phys. Rev. 99–2, 406 (1955)CrossRefGoogle Scholar
  9. 9.
    W.C. Dunlap, Phys. Rev. 79–2, 286 (1950)CrossRefGoogle Scholar
  10. 10.
    M.B. Prince, Phys. Rev. 92–3, 681 (1953)CrossRefGoogle Scholar
  11. 11.
    R. Wichner, S.P. Swierkowski, G.A. Armantrout, IEEE Trans. Nucl. Sci. NS-21, 273 (1974)ADSCrossRefGoogle Scholar
  12. 12.
    G. Yang, G.J. Wang, W.C. Xiang et al., J. Cryst. Growth 352, 43 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    G. Yang, J. Govani, H. Mei et al., Cryst. Res. Technol. 53(4), 269 (2014)CrossRefGoogle Scholar
  14. 14.
    G. Yang, D.M. Mei, J. Govai et al., Appl. Phys. A 113(1), 207 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    J.Y.M. Lee, I.C. Cheng, Electrical properties of lightly doped polycrystalline silicon., J. Appl. Phys. 53–1, 490 (1982)ADSCrossRefGoogle Scholar
  16. 16.
    J.Y. Lee, F.Y. Wang, Microelectron. J. 17–5, 23 (1986)CrossRefGoogle Scholar
  17. 17.
    G.E. Pike, C.H. Seager, J. Appl. Phys. 50–5, 3414 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    J. Martinez, J. Piqueras, Solid State Electron. 23, 297 (1980)ADSCrossRefGoogle Scholar
  19. 19.
    D.A. Anderson, N. Apsley, Semicond. Sci. Technol. 1, 187 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    E. Conwell, V.F. Weisskopf, Phys. Rev. 69–2, 258 (1946)Google Scholar
  21. 21.
    N.C.-C. Lu, L. Gerzberg, C.-Y. Lu, J.D. Meindl, IEEE Trans. Electon Dev. 30–2, 137 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gang Yang
    • 1
  • Kyler Kooi
    • 1
  • Guojian Wang
    • 1
  • Hao Mei
    • 1
  • Yangyang Li
    • 1
  • Dongming Mei
    • 1
  1. 1.Department of PhysicsThe University of South DakotaVermillionUSA

Personalised recommendations