Advertisement

Applied Physics A

, 124:389 | Cite as

Effect of microwaves on the synthesis, structural and dielectric properties of Ca-modified BaTiO3 ceramics

  • Abdelaziz Salhi
  • Salah-eddine Sayouri
  • Boujemaa Jaber
  • L-Haj Omari
Article

Abstract

A pre-heat treatment with a domestic microwave, (MW), performed on gel-dry of sol gel processed Ca-modified BaTiO3, with the chemical formulation Ba1−x Ca x TiO3 such as x = 0, 1, 5, 10, 15, 20 and 30%, has been shown to lower the calcination temperature of these samples and to strongly influence their physicochemical properties. Indeed, X-ray diffraction and Raman characterizations of the samples revealed a gradual change from tetragonal to pseudo cubic phase with increasing x and a predominance of the occupation of the Ti-site for the composition x < 10 and that of the Ba-site for x ≥ 10. Dielectric measurements have shown that the temperature, Tm, of the ferro-to-paraelectric transition is sensitive to the above-mentioned behavior, with a diffuse character of this transition; Tm first decreases for the concentrations in x such as x < = 10 (predominance of occupation of Ti sites) before it increases for the compositions with x > 10 (predominance of occupation of Ba-sites). The thermal behavior of the permittivity has been approached by the modified Uchino’s law, allowing the calculation of the dielectric parameters (diffuseness and relaxation parameters).

References

  1. 1.
    H. Veenhuis et al., Appl. Phys. B Lasers Opt 70, 797 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    L. Zhang, O.P. Thakur, A. Feteira, G.M. Keith, A.G. Mould, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 90, 142914 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Y.H. Han, J.B. Appleby, D.M. Smyth, J. Am. Ceram. Soc. 70, 96 (1987)CrossRefGoogle Scholar
  4. 4.
    X.W. Zhang, Y.H. Han, M. Lal, D.M. Smyth, J. Am. Ceram. Soc. 70, 100 (1987)CrossRefGoogle Scholar
  5. 5.
    Y. Sakabe, N. Wada, T. Hiramatsu, T. Tonogaki, Jpn. J. Appl. Phys. Part 1 41(11B), 6922–6925 (2002)CrossRefGoogle Scholar
  6. 6.
    S. Salhi, L. Sayouri, T. Hajji, Lamcharfi, J. Ceram. Process. Res. 17(12), 1236–1242 (2016)Google Scholar
  7. 7.
    S. Kumar, G.L. Messing, J. Am. Ceram. Soc. 77, 2940–2948 (1994)CrossRefGoogle Scholar
  8. 8.
    J. Xue, J. Wang, D. Wan, J. Am. Ceram. Soc. 83, 232–234 (2000)CrossRefGoogle Scholar
  9. 9.
    C.Y. Fang, C.A. Randal, M.T. Lanagan, D.K. Agrawal, J. Electroceram. 22, 125–130 (2009)CrossRefGoogle Scholar
  10. 10.
    D. Fu, M. Itoh, S. Koshihara, J. Phys. Condens. Matter 22, 052204 (2010).  https://doi.org/10.1088/0953-8984/22/5/052204 ADSCrossRefGoogle Scholar
  11. 11.
    S. Lee, C.A. Randall, Appl. Phys. Lett. 92, 111904 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    V.S. Puli, D.K. Pradhan, B.C. Riggs, D.B. Chrisey, R.S. Katiyar, J. Alloys Compd. 584, 369–373 (2014)CrossRefGoogle Scholar
  13. 13.
    K. Niesz, T. Ould-Ely, H. Tsukamoto, D.E. Morse, Ceram. Int. 37, 303–311 (2011)CrossRefGoogle Scholar
  14. 14.
    M. Quitter, M. Lambert, ibid. 12, 1053 (1973)Google Scholar
  15. 15.
    G. Burns, Phy. Rev. B. 10, 1951 (1974)ADSCrossRefGoogle Scholar
  16. 16.
    M.C. Chang, S.C. Yu, J. Mater. Sci. Lett. 19. 1323–1325 (2000)CrossRefGoogle Scholar
  17. 17.
    U.D. Venkateswaran, V.M. Naik, R. Naik, Phys. Rev. B 58, 14256 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Shiratori, C. Pithan, J. Dornseiffer, R. Waser, J. Raman Spectrosc 38, 1288–1299 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    T. Noma, S. Wada, M. Yano, T. Suzuki, J. Appl. Phys. 80(9), 5223–5233 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    R. Farhi, M. El Marssi, A. Simon, J. Ravez, Eur. Phys. J. B 18, 605–610 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    D.-Y. Lu, X.-Y. Sun, M. Toda, J. Phys. Chem. Solids 68, 650–664 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    S. Yuna, X. Wang, J. Li, J. Shi, D. Xu, Mater. Chem. Phys 116, 339–343 (2009)CrossRefGoogle Scholar
  23. 23.
    P.S.R. Krishna, D. Pandey, V.S. Tiwari, R. Chakravarthy, B.A. Dasannacharya, Appl. Phys. Lett. 62, 231–233 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    V. Krayzman, I. Levin, J.C. Woicik, F. Bridges, E.J. Nelson, D.C. Sinclair, J. Appl. Phys. 113, 0044106 (2013)CrossRefGoogle Scholar
  25. 25.
    Z.Q. Zhuang, M.P. Hamer, D.M. Smyth, R.E. Newnham, Mater. Res. Bull. 22, 1329 (1987)CrossRefGoogle Scholar
  26. 26.
    R.D. Shannon, Acta Cryst A32, 751 (1976)CrossRefGoogle Scholar
  27. 27.
    J.-S. Park, Y.-H. Lee, K.-B. Kim, Y. Kim, Nucl. Instrum. Methods Phys. Res. B 284, 44–48 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    M. Ganguly, S.K. Rout, C.W. Ahn, I.W. Kim, Ceram. Int. (2013)Google Scholar
  29. 29.
    M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, I.W. Kim, J. Alloys Compd. 579, 473–484 (2013)CrossRefGoogle Scholar
  30. 30.
    P. Hansen, D. Hennings, H. Schreinemacher, J. Electroceram. 2, 85 (1998)CrossRefGoogle Scholar
  31. 31.
    S.J. Lee, I.J. Park, Y.H. Han, Mater. Chem. Phys. 121, 161–164 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    N.S. Echatoui, T. Lamcharfi, S. Sayouri, L. Hajji, A. Alimoussa, Phys. Chem. News 26, 40–46 (2005)Google Scholar
  33. 33.
    S. Yun, J. Shi, X. Qian, Mater. Chem. Phys. 133, 487–494 (2012)CrossRefGoogle Scholar
  34. 34.
    S. Lin, T. Lü, C. Jin, X. Wang, Phys. Rev. B 74, 134115 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Sciences-DMLPTAFez-AtlasMorocco
  2. 2.CNRSTRabatMorocco
  3. 3.Faculty of Sciences Ain Chock Casablanca, Hassan II UniversityCasablancaMorocco

Personalised recommendations