Applied Physics A

, 124:371 | Cite as

Femtosecond laser melting of silver nanoparticles: comparison of model simulations and experimental results

  • Chung-Wei Cheng
  • Chin-Lun Chang
  • Jinn-Kuen Chen
  • Ben Wang
Article
  • 11 Downloads

Abstract

Ultrafast laser-induced melting of silver nanoparticles (NPs) using a femtosecond laser pulse is investigated both theoretically and experimentally. The sintered Ag structure fabricated from printed Ag NP ink using femtosecond laser (1064 nm, 300 fs) irradiation is experimentally studied. A two-temperature model with dynamic optical properties and particle size effects on the melting temperature of Ag NPs is considered. The rapid phase change model is incorporated to simulate the Ag NPs’ ultrafast laser-induced melting process, and a multi-shot melting threshold fluence predicted from the simulated single-shot melting threshold is developed.

Notes

Acknowledgements

The authors would like to thank the MOST 105-2221-E-009-063 for support of this research.

References

  1. 1.
    M. Hedges, A.B. Marin, 3D Aerosol Jet Printing–Adding Electronics Functionality to RP/RM. In: Presented at the DDMC, (Berlin, 2012)Google Scholar
  2. 2.
    S. Wunscher, R. Abbel, J. Perelaer, U.S. Schubert, Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices. J. Mater. Chem. C 2, 10232–10261 (2014)CrossRefGoogle Scholar
  3. 3.
    Y.H. Yoon, S.-M. Yi, J.-R. Yim, J.-H. Lee, G. Rozgonyi, Y.-C. Joo, Microstructure and electrical properties of high power laser thermal annealing on inkjet-printed Ag films. Microelectron. Eng. 87, 2230–2233 (2010)CrossRefGoogle Scholar
  4. 4.
    A. Chiolerio, G. Maccioni, P. Martino, M. Cotto, P. Pandolfi, P. Rivolo et al., Inkjet printing and low power laser annealing of silver nanoparticle traces for the realization of low resistivity lines for flexible electronics. Microelectron. Eng. 88, 2481–2483 (2011)CrossRefGoogle Scholar
  5. 5.
    I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, I. Zergioti, Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics. Appl. Surf. Sci. 336, 157–162 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Son, J. Yeo, H. Moon, T.W. Lim, S. Hong, K.H. Nam et al., Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles. Adv. Mater. 23, 3176–3181 (2011)CrossRefGoogle Scholar
  7. 7.
    H. Huang, M. Sivayoganathan, W.W. Duley, Y. Zhou, Efficient localized heating of silver nanoparticles by low-fluence femtosecond laser pulses. Appl. Surf. Sci. 331, 392–398 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Zhang, J.K. Chen, Ultrafast melting and resolidification of gold particle irradiated by pico- to femtosecond lasers. J. Appl. Phys. 104, 054910 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    C. Cheng, J. Chen, Femtosecond laser sintering of copper nanoparticles. Appl. Phys. A 122, 289 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    L. Li, L. Zhou, Y. Shan, M. Yang, Analysis of rapid melting and resolidification in femtosecond laser interaction with nanoparticle. Numer. Heat Transf. Part A Appl. 69, 859–873 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    L. Liu, P. Peng, A. Hu, G. Zou, W. Duley, Y.N. Zhou, Highly localized heat generation by femtosecond laser induced plasmon excitation in Ag nanowires. Appl. Phys. Lett. 102, 073107 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    H. Sehmi, W. Langbein, E. Muljarov, Optimizing the Drude–Lorentz model for material permittivity: method, program, and examples for gold, silver, and copper. Phys. Rev. B 95, 115444 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    J. Byskov-Nielsen, J.-M. Savolainen, M.S. Christensen, P. Balling, Ultra-short pulse laser ablation of copper, silver and tungsten: experimental data and two-temperature model simulations. Appl. Phys. Mater. Sci. Process. 103, 447–453 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    H.U. Yang, J. D’Archangel, M.L. Sundheimer, E. Tucker, G.D. Boreman, M.B. Raschke, Optical dielectric function of silver. Phys. Rev. B 91, 235137 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    A. Vial, T. Laroche, Comparison of gold and silver dispersion laws suitable for FDTD simulations. Appl. Phys. B Lasers Opt. 93, 139–143 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    S.I. Anisimov, B. Rethfeld, Theory of ultrashort laser pulse interaction with a metal. Proc. SPIE 3093, 192–203 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    K. Vestentoft, P. Balling, Formation of an extended nanostructured metal surface by ultra-short laser pulses: single-pulse ablation in the high-fluence limit. Appl. Phys. A Mater. Sci. Process. 84, 207–213 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Lin, L.V. Zhigilei, V. Celli, Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Ren, J.K. Chen, Y. Zhang, Modeling of ultrafast phase changes in metal films irradiated by an ultrashort laser pulse using a semiclassical two-temperature model. Int. J. Heat Mass Transf. 55, 1260–1627 (2012)CrossRefGoogle Scholar
  20. 20.
    Y.P. Ren, J.K. Chen, Y.W. Zhang, J. Huang, Ultrashort laser pulse energy deposition in metal films with phase changes. Appl. Phys. Lett. 98, 191105 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    W.-L. Chan, R.S. Averback, D.G. Cahill, A. Lagoutchev, Dynamics of femtosecond laser-induced melting of silver. Phys. Rev. B 78, 214107 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    P. Peng, A. Hu, A.P. Gerlich, G. Zou, L. Liu, Y.N. Zhou, Joining of silver nanomaterials at low temperatures: processes, properties, and applications. ACS Appl. Mater. Interfaces 7, 12597–12618 (2015)Google Scholar
  23. 23.
    Y. Zhang, J.K. Chen, An interfacial tracking method for ultrashort pulse laser melting and resolidification of a thin metal film. J. Heat Transf. 130, 062401–062401 (2008)CrossRefGoogle Scholar
  24. 24.
    Y. Jee, M.F. Becker, R.M. Walser, Laser-induced damage on single-crystal metal surfaces. JOSA B 5, 648–659 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    M. Saghebfar, M. Tehrani, S. Darbani, A. Majd, Femtosecond pulse laser ablation of chromium: experimental results and two-temperature model simulations. Appl. Phys. A 123, 28 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    L. Gallais, E. Bergeret, B. Wang, M. Guérin, E. Bènevent, Ultrafast laser ablation of metal films on flexible substrates. Appl. Phys. A 115, 177–188 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    D. Bruneel, G. Matras, R. Le Harzic, N. Huot, K. Koenig, E. Audouard, Micromachining of metals with ultra-short Ti-Sapphire lasers: prediction and optimization of the processing time. Opt. Lasers Eng. 48, 268–271 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chung-Wei Cheng
    • 1
  • Chin-Lun Chang
    • 1
  • Jinn-Kuen Chen
    • 2
  • Ben Wang
    • 3
  1. 1.Department of Mechanical EngineeringNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaUSA
  3. 3.H. Milton Stewart School of Industrial and Systems Engineering and Manufacturing Research CenterGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations