Applied Physics A

, 124:372 | Cite as

Simulation of photobioreaction for hydrogen production in membrane bioreactor with an optical fiber

  • Yanxia Yang
  • Jing Li


A generalized lattice Boltzmann (LB) model for porous media is adopted to simulate the hydrodynamics and mass transport combined with biodegradation in membrane bioreactor with a circular optical fiber. The LB model is coupled with a multi-block scheme, as well as non-equilibrium extrapolation method for boundary condition treatment. The effect of porosity and permeability (represented by Darcy number Da) of biofilm on flow and concentration fields are investigated. The performance of biodegradation is evaluated by substrate consumption efficiency. Higher porosity and permeability of biofilm facilitate mass transport of substance and enhance the metabolic activity of bacteria in biofilm, which results in the optimal biodegradation performance is obtained under the condition of Da = 0.001 and \(\varepsilon =0.3\). For further increasing of these parameters, the substrate consumption efficiency decreases due to the inhibition effect of substrate and shorter hydraulic retention time. Furthermore, the LB results coincide with experimental results, demonstrating that the LB model for porous media is available to optimize the membrane bioreactor for efficient biodegradation.



The authors are grateful for the financial support provided by the National Natural Science Foundation of China (51506139) and the Key Laboratory of Low-grade Energy Utilization Technologies and Systems Foundation (LLEUTS-201607).


  1. 1.
    G.P. Sheng, H.Q. Yu, X.Y. Li, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol. Adv. 28(6), 882–894 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Shojaie, M. Fattahi, S. Jorfi, B. Roozbehani, Hydrothermal synthesis of Fe–TiO2–Ag nano-sphere for photocatalytic degradation of 4-chlorophenol (4-CP): investigating the effect of hydrothermal temperature and time as well as calcination temperature. J. Environ. Chem. Eng. 5(5), 4564–4572 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Payan, M. Fattahi, S. Jorfi, B. Roozbehani, S. Payan, Synthesis and characterization of titanate nanotube/single-walled carbon nanotube (TNT/SWCNT) porous nanocomposite and its photocatalytic activity on 4-chlorophenol degradation under UV and solar irradiation. Appl. Surf. Sci. 434, 336–350 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    S.Z. Shirejini, M. Fattahi, Mathematical modeling and analytical solution of two-phase flow transport in an immobilized-cell photobioreactor through the homotopy perturbation method (HPM). Int. J. Hydrogen Energy 41(41), 18405–18417 (2016)CrossRefGoogle Scholar
  5. 5.
    C.S. Butler, J.P. Boltz, 3.6-Biofilm Processes and Control in Water and Wastewater Treatment, in Comprehensive Water Quality and Purification, ed. by S. Ahuja, (Elsevier, Waltham, 2014), pp. 90–107CrossRefGoogle Scholar
  6. 6.
    G. Kars, U. Gündüz, Towards a super H2 producer: improvements in photofermentative biohydrogen production by genetic manipulations. Int. J. Hydrogen Energy 35(13), 6646–6656 (2010)CrossRefGoogle Scholar
  7. 7.
    J. Cheng, L.K. Ding, R.C. Lin, L.C. Yue, J.Z. Liu, J.H. Zhou, K.F. Cen, Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: effects of physiochemical properties and mix ratios on fermentation performance. Appl. Energy 184, 1–8 (2016)CrossRefGoogle Scholar
  8. 8.
    R.K. Goud, K. Arunasri, D.K. Yeruva, K.V. Krishna, S. Dahiya, S.V. Mohan, Impact of selectively enriched microbial communities on long-term fermentative biohydrogen production. Bioresour. Technol. 242, 253–264 (2017)CrossRefGoogle Scholar
  9. 9.
    V. Maria, C. Blanco, L.T. Fuess, M. Zaiat, Calcium dosing for the simultaneous control of biomass retention and the enhancement of fermentative biohydrogen production in an innovative fixed-film bioreactor. Int. J. Hydrogen Energy 42(17), 12181–12196 (2017)CrossRefGoogle Scholar
  10. 10.
    V. Gadhamshetty, A. Sukumaran, N. Nirmalakhandan, M.T. Myint, Photofermentation of malate for biohydrogen production—a modeling approach. Int. J. Hydrogen Energy 33(9), 2138–2146 (2008)CrossRefGoogle Scholar
  11. 11.
    S.J. Wang, Z.H. Ma, T. Zhang, M.D. Bao, H.J. Su, Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch. Front. Chem. Sci. Eng. 11(1), 100–106 (2017)CrossRefGoogle Scholar
  12. 12.
    X. Wang, J. Ding, W.Q. Guo, N.Q. Ren, Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation. Int. J. Hydrogen Energy 35(20), 10960–10966 (2010)CrossRefGoogle Scholar
  13. 13.
    Q. Liao, D.M. Liu, D.D. Ye, X. Zhu, D.J. Lee, Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor. Int. J. Hydrogen Energy 36(21), 13939–13948 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    X. He, L.S. Luo, Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56(6), 6811 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    S. Chen, D. Martinez, R. Mei, On boundary conditions in lattice Boltzmann methods. Phys. Fluids 8(9), 2527–2536 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Z.L. Guo, B.C. Shi, N.C. Wang, Lattice BGK model for incompressible Navier–Stokes equation. J. Comput. Phys. 165(1), 288–306 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Y.H. Qian, D. d’Humieres, P. Lallemand, Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17(6), 479–484 (1992)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    B. Chopard, P.O. Luthi, Lattice Boltzmann computations and applications to physics. Theor. Comput. Sci. 217(1), 115–130 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    S. Succi, The lattice Boltzmann equation For Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001)zbMATHGoogle Scholar
  21. 21.
    L. Biferale, P. Perlekar, M. Sbragaglia, F. Toschi, Convection in multiphase fluid flows using lattice Boltzmann methods. Phys. Rev. Lett. 108(10), 104502 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    S.H. Kim, H. Pitsch, I.D. Boyd, Lattice Boltzmann modeling of multicomponent diffusion in narrow channels. Phys. Rev. E 79(1), 016702 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    J. Onishi, Y. Chen, H. Ohashi, Dynamic simulation of multi-component viscoelastic fluids using the lattice Boltzmann method. Phys. A Stat. Mech. Appl. 362(1), 84–92 (2006)CrossRefGoogle Scholar
  24. 24.
    C. Xie, J. Zhang, M. Wang, Lattice Boltzmann modeling of non-Newtonian multiphase fluid displacement. Chin. J. Comput. Phys. 33(2), 147–155 (2016)Google Scholar
  25. 25.
    H. Paradis, M. Andersson, B. Sunden, Modeling of mass and charge transport in a solid oxide fuel cell anode structure by a 3D lattice Boltzmann approach. Heat Mass Transf. 52(8), 1529–1540 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Gao, X. Zhang, P. Rama, Y. Liu, R. Chen, H. Ostadi, K. Jiang, Calculating the anisotropic permeability of porous media using the lattice Boltzmann method and X-ray computed tomography. Transp. Porous Med. 92(2), 457–472 (2012)CrossRefGoogle Scholar
  27. 27.
    N. Verma, D. Mewes, Lattice Boltzmann methods for simulation of micro and macrotransport in a packed bed of porous adsorbents under non-isothermal condition. Comput. Math. Appl. 58(5), 1003–1014 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    K. Yamamoto, N. Takada, M. Misawa, Combustion simulation with Lattice Boltzmann method in a three-dimensional porous structure. Proc. Combust. Inst. 30(1), 1509–1515 (2005)CrossRefGoogle Scholar
  29. 29.
    T. Wang, Q. Gao, J. Chen, H. Xu, M. Yang, Lattice Boltzmann simulation of mixed convection in an enclosure filled with porous medium. Chin. J. Comput. Phys. 34(1), 39–46 (2017)Google Scholar
  30. 30.
    M. Raúl, Numerical simulations of surface reaction in porous media with lattice Boltzmann. Chem. Eng. Sci. 69(1), 628–643 (2012)CrossRefGoogle Scholar
  31. 31.
    T. Lei, X. Meng, Z. Guo, Lattice Boltzmann study on influence of chemical reaction on mixing of miscible fluids with viscous instability in porous media. Chin. J. Comput. Phys. 33(4), 399–409 (2016)Google Scholar
  32. 32.
    L.K. Li, C. Chen, A. Singh, N. Rahmatian, N. AuYeung, K. Randhir, R.W. Mei, J.F. Klausner, D.W. Hahn, J. Petrasch, A transient heat transfer model for high temperature solar thermochemical reactors. Int. J. Hydrogen Energy 41(4), 2307–2325 (2016)CrossRefGoogle Scholar
  33. 33.
    S.P. Sullivan, F.M. Sani, M.L. Johns, L.F. Gladden, Simulation of packed bed reactors using lattice Boltzmann methods. Chem. Eng. Sci. 60(12), 3405–3418 (2005)CrossRefGoogle Scholar
  34. 34.
    Z.L. Guo, T.S. Zhao, Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66(3), 036304 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    P. Nithiarasu, K.N. Seetharamu, Natural convection heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transf. 40, 3955–3967 (1997)CrossRefzbMATHGoogle Scholar
  36. 36.
    D.Z. Yu, R.W. Mei, W. Shyy, A multi-block lattice Boltzmann method for viscous fluid flows. Int. J. Numer. Methods Fluids 39(2), 99–120 (2002)ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    S. Ergun, Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952)Google Scholar
  38. 38.
    K. Vafai, Convective flow and heat transfer in variable porosity media. J. Fluid Mech. 147, 233–259 (1984)ADSCrossRefzbMATHGoogle Scholar
  39. 39.
    D. Liu, Modeling for Multiphase Flow and Transport with Biochemical Reaction in Immobilized Photobioreactor for Hydrogen Production, (Chongqing University, Chongqing, 2010)Google Scholar
  40. 40.
    Z.L. Guo, C.G. Zheng, B.C. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14(6), 2007–2010 (2002)ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    Q. Zou, X. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9(6), 1591–1598 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    G. Chenglong, Transport Characteristics in Biofilm Photobioreactor with Photosynthetic Bacteria and Enhancement of Hydrogen Production Performance (Chongqing University, Chongqing, 2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electrical and Power EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of ChinaChongqing UniversityChongqingChina
  3. 3.College of Environmental Science and EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations