Skip to main content
Log in

Doping influence on microwave detection by metal–porous silicon contacts

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present the study of voltage signal rise across both additionally doped and undoped porous silicon diode sensors exposed to microwave radiation. The doped ones exhibit fast, of the nanosecond order, response times, but lower voltage–power responsivity values as compared to similar diodes but containing no porous layer. Insertion of porous surface layer into the undoped samples can significantly enhance their responsivity, however, they demonstrate much slower, of the order of tens of microseconds, response to microwave-modulating pulse. Microwave radiation induces voltage signals of opposite polarity in different types of the porous samples. Models all based mainly on hot carrier effects are exploited to explain the experimental results. Possible aspects of application are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Peng, J. Jie, W. Zhang, S.T. Lee, Appl. Phys. Lett. 93, 033105 (2008)

    Article  ADS  Google Scholar 

  2. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  3. B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhan, X. Cheng, Adv. Funct. Mater. 18, 2348 (2008)

    Article  Google Scholar 

  4. E.J. Anglin, L. Cheng, W.R. Freeman, M.J. Sailor, Adv. Drug Deliv. Rev. 60(11), 1266 (2008)

    Article  Google Scholar 

  5. H. Fang, X. Li, S. Song, Y. Xu, J. Zhu, Nanotechnology 19(25), 5703 (2008)

    Article  Google Scholar 

  6. E.C. Garnett, P. Yang, J. Am. Chem. Soc. 130, 9224 (2008)

    Article  Google Scholar 

  7. R.S. Dariani, M. Zabihipour, Appl. Phys. A 122, 1047 (2016). https://doi.org/10.1007/s00339-016-0516-7)

    Article  ADS  Google Scholar 

  8. A. Trabelsi, A. Zouari, Sol. Energy 107, 220 (2014)

    Article  ADS  Google Scholar 

  9. J.H. Selj, Porous silicon for light management in silicon solar cells. University of Oslo, Ph.D. thesis (2010)

  10. J. Gradauskas, J. Stupakova, in Porous Silicon: From Formation to Application, V2, ed. by G. Korotcenkov (Taylor & Francis Group, CRC Press, Boca Raton, 2016), p. 186

    Google Scholar 

  11. A. Petit, M. Delmotte, A. Loupy, J.N. Chazalviel, F. Ozanam, R. Boukherroub, J. Phys. Chem. C 112(42), 16622 (2008)

    Article  Google Scholar 

  12. A. Xia, W. Zhang, W. Bao, C. Dong, J. Zhang, J. Phys. Status Solidi A 209(11), 2247 (2012)

    Article  ADS  Google Scholar 

  13. C.M. Nam, Y.S. Kwon, Microw. Guided Wave Lett. IEEE 8(11), 369 (1998)

    Article  Google Scholar 

  14. G.E. Ponchak, I.K. Itotia, R.F. Drayton, Proceedings of 33rd european microwave conference, Munich, 45, (2003)

  15. J. E.Shatkovskis, J. Gradauskas, A. Stupakova, A. Česnys, Sužiedėlis, Lith. J. Phys. 47(2), 169 (2007)

    Article  Google Scholar 

  16. A. Fantom, Radio Frequency Microwave Power Measurement (P. Peregrinus on behalf of the Institution of Electrical Engineers, London, 1990)

    Book  Google Scholar 

  17. R.J. Collier, A.D. Skinner, Microwave Measurements, 3rd edn. IET Electrical and Measurement Series, vol. 12. (The Institution of Engineering and Technology, London, 2007)

    Google Scholar 

  18. M. Ben-Chorin, F. Moller, F. Koch, J. Appl. Phys. 77(9), 4482 (1995)

    Article  ADS  Google Scholar 

  19. V. Lehmann, Electrochemistry of Silicon. (Willey, Weinheim, 2002)

    Book  Google Scholar 

  20. S. Ašmontas, J. Gradauskas, V. Zagadsky, J. Stupakova, A. Sužiedėlis, E. Šatkovskis, Tech. Phys. Lett. 32(7), 603 (2006)

    Article  ADS  Google Scholar 

  21. E. Shatkovskis, J. Stupakova, J. Gradauskas, A. Sužiedėlis, R. Mitkevičius, Lith. J. Phys. 51(2), 143 (2011)

    Article  Google Scholar 

  22. S. Ašmontas, Electrogradient Phenomena in Semiconductors. (Mokslas, Vilnius, 1984)

    Google Scholar 

  23. S. Ašmontas, B. Vengalis, V. Guoga, A. Olekas, A. Sužiedėlis, J. Commun. Technol. El. 28(2), 577 (1983)

    Google Scholar 

  24. A. Dargys, J. Kundrotas, Handbook of Physical Properties of Ge, Si GaAs and InP. (Science and Encyclopedia Publishers, Vilnius, 1994)

    Google Scholar 

  25. G. Amato, G. Benedetto, L. Boarino, N. Brunetto, R. Spagnolo, Opt. Eng. 36(2), 423 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was in part supported by the Research Council of Lithuania (Grant No. LAT-03/2016) in the frame of National Science Program “Towards Future Technologies”. The authors are thankful to Marius Treideris and Nijolė Uzėlienė for their kind assistance in the sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Gradauskas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gradauskas, J., Stupakova, J., Sužiedėlis, A. et al. Doping influence on microwave detection by metal–porous silicon contacts. Appl. Phys. A 124, 352 (2018). https://doi.org/10.1007/s00339-018-1785-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1785-0

Navigation