Advertisement

Applied Physics A

, 124:382 | Cite as

Thermal, mechanical, optical and dielectric properties of piperazinium hydrogen phosphite monohydrate NLO single crystal

  • R. Rajkumar
  • P. Praveen Kumar
Review
  • 52 Downloads

Abstract

Optical transparent crystal of piperazinium hydrogen phosphite monohydrate (PHPM) was grown by slow evaporation method. The grown crystal was characterized by single crystal X-ray diffraction analysis and the crystal belongs to monoclinic system. The functional groups present in PHPM crystal were confirmed by FTIR analysis. UV–Visible spectrum shows that the PHPM crystal is transparent in the visible region. The mechanical behavior of PHPM crystal was characterized by Vickers hardness test. Thermal stability of PHPM crystal was analyzed by thermogravimetric analysis. Dielectric studies were also carried out for the grown crystal. The third-order nonlinear parameters such as nonlinear refractive index and nonlinear absorption coefficient have been calculated using Z scan technique.

References

  1. 1.
    M.D. Aggrwal, W.S. Wang, B.G. Penn, D.O. Frazeir, H.S. Valwa, in Hand book of Advance Electronic and photonic material and Devices, vol. 9 (Academic, Cambridge, 2001), p. 193CrossRefGoogle Scholar
  2. 2.
    D. Sankar, P. Praveen Kumar, J. Madhavan, Influence of metal dopants (Cu and Mg) on the thermal, mechanical and optical properties of l-alanine acetate single crystal. Phys. B 405, 233 (2010)Google Scholar
  3. 3.
    U. Duo-rong, X.V. Dong, Z.L. Nan, I.U. Ming-guo, J. Min-hua, Organic nonlinear optical MHBA for compact blue-violet laser. Chin. Phys Lett. 13, 841 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    M. Jiang, Q. Fang, Organic and semi organic nonlinear optical materials. Adv. Mater. 11, 13 (1999)Google Scholar
  5. 5.
    P. Tansuri, K. Tanswee, B. Gabrille, Z. Micka, J. Solid State Chem. 150, 305 (2000)CrossRefGoogle Scholar
  6. 6.
    P. Gunter, C. Bosshard, K. Sutter, H. Arend, G. Chapuis, 2cyclooctylamino5nitropyridine, a new nonlinear optical crystal with orthorhombic symmetry. Appl. Phys. Lett. 50, 486 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    T. Pal, T. Kar, Optical, mechanical and thermal studies of nonlinear optical crystal l-arginine acetate. Mater. Chem. Phys. 91, 343 (2005)CrossRefGoogle Scholar
  8. 8.
    P. Parkin, I.D.H. Oswald, S. Parsons, Structures of piperazine, piperidine and morpholine. Acta Crystallogr. Sect. B Struct. Sci. 60, 219 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Gunasekaran, B. Anita, Spectral investigation and normal coordinate analysis of pipeazine Indian. J. Pure Appl. Phys. 46, 833 (2008)Google Scholar
  10. 10.
    T. Eicher, S. Hauptmann, The Chemistry of Hertro cycles (G. Thieme Verlag, Stuttgart, 1995)Google Scholar
  11. 11.
    T.A. William, Harrison, Piperizinium hydrogen phosphite monohydrate. Acta Crtstallogr. Sect. E Struct. Rep. Online 60, 1577 (2004)CrossRefGoogle Scholar
  12. 12.
    P.N. Prasad, Ser. Wave-Phenom. 9, 305 (1989) (Springer) Google Scholar
  13. 13.
    P. Rameshkumar, R. Gunaseelan, S. Kumararaman, G. Baghavannarayana, P. Sagayaraj, Unidirectional growth, linear and nonlinear optical, dielectric and mechanical properties of organic adduct of l-tartaric acid nicotin amide. Phys. B 406, 1204 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S. Suresh, A. Ramanand, D. Jayaraman, Growth, optical, dielectric and fundamental properties of L-arginine acetate NLO single crystals. Recent Res. Sci. Technol. 3, 25 (2011)Google Scholar
  15. 15.
    D.D.O. Eya, A.J. Ekpunobi, C.E. Okeke, Influence of thermal annealing on the optical properties of tin oxide thin films prepared by chemical bath deposition technique. Acad. Open Internet J. 17 (2006)Google Scholar
  16. 16.
    R. Rajkumar, P. Praveen Kumar, Optical, mechanical, dielectric and thermal properties of piperazinium benzoate single crystal for nonlinear optical applications. J. Opt. (2017).  https://doi.org/10.1007/s12596-017-0425-y Google Scholar
  17. 17.
    K.V. Rao, A. Samokula, Dielectric properties of cobalt oxide, nickel oxide and their mixed crystals. J. Appl. Phys. 36, 2031 (1965)ADSCrossRefGoogle Scholar
  18. 18.
    P. Praveen Kumar, V. Manivannan, S. Tamilselvan, S. Senthil, V.A. Raj, P. Sagayaraj, J. Madhavan, Growth and characterization of a pure and doped nonlinear optical l-histidine acetate single crystals. J. Opt. Commun. 281, 2989 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    R. Parimaladevi, C. Sekar, Crystal growth and spectral studies of nonlinear optical γ-glycine single crystal grown from phosphoric acid. Spectrochim. Acta. Part A 76, 490 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    M. Amudha, J. Madhavan, P. Praveen Kumar, Studies on the growth and characterization of benzimidazolium picrate single crystals. J. Opt. (2016).  https://doi.org/10.1007/s12596-016-0381-y Google Scholar
  21. 21.
    S. Karan, S.P. Sen Gupta, Vickers microhardness studies on solution-grown single crystals of magnesium sulphate hepta-hydrate. Mater. Sci. Eng. A 398, 198 (2005)CrossRefGoogle Scholar
  22. 22.
    V. Sangeetha, K. Gayathri, P. Krishnan, N. Sivakumar, N. Kanagathara, G. Anbalagan, Growth, optical, thermal, dielectric and microhardness characterizations of melaminium bis (trifluoroacetate) trihydrate single crystal. J. Cryst. Growth 308, 30 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    I.P. Bincy, R. Gopalakrishnan, Synthesis, growth and characterization of new organic crystal: 2-aminopyridinium p-toluenesulfonate for third order nonlinear optical applications. J. Cryst. Growth 402, 22 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hangan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n2 measurements. Opt. Lett. 14, 955 (1989)ADSCrossRefGoogle Scholar
  26. 26.
    Y.-S. Zhou, E.-B. Wang, J. Peng, J. Liu, C.-W. Hu, R.-D. Huang, X. You, Synthesis and the third-order optical nonlinearities of two novel charge-transfer complexes of a heteropoly blue type (C9 H7 NO)4 H7 PMo12 O4·3H2O (C9 H7 NO = quinolin-8-ol) and (phen)3 H7 PMo12 O40 CH3 CN·H2O (phen = 1,10-phenanthroline). Polyhedron 18, 1419 (1999)CrossRefGoogle Scholar
  27. 27.
    L. Irimpan, A. Deepthy, B. Krishnan, L.M. Kukreja, V.P.N. Nampoori, P. Radhakrishnan, Effect of self assembly on the nonlinear optical characteristics of ZnO thin films. Opt. Commun. 281, 2938 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsPresidency CollegeChennaiIndia

Personalised recommendations