Advertisement

Applied Physics A

, 124:363 | Cite as

Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material

  • Nasrin Beheshtkhoo
  • Mohammad Amin Jadidi Kouhbanani
  • Amir Savardashtaki
  • Ali Mohammad Amani
  • Saeed Taghizadeh
Article

Abstract

Green synthetic method is an important process that can be used for the synthesis of iron nanoparticles in the field of nanotechnology because of its characteristics of low cost and high efficiency for industrial large-scale production. In this study, iron oxide nanoparticles (IONPs) were synthesized by a simple bio-reduction method. Aqueous leaf extract of Daphne mezereum was used as a reducing and stabilizing agent. Ultraviolet–visible (UV–vis) absorption spectroscopy was used to monitor the dye removing ability of IONPs. Also, IONPs were characterized by transmission electron microscopy (TEM), particle size analysis (PSA), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), and thermo gravimetric analysis (TGA). The average diameter of the prepared NPs ranged from 6.5 to 14.9 nm with a mean particle size of 9.2 nm. In addition, the synthesized iron nanoparticles were tested for dye removing activities. The decoloration efficiency of INPs catalyzed reaction was about 81% after 6 h. Thus, it could be concluded that D. mezereum aqueous leaf extract can be used efficiently in the production of iron oxide NPs for commercial applications in environmental fields.

Notes

Acknowledgements

This work was financially supported by School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.

References

  1. 1.
    V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface. Mater. Sci. Eng. C 31(5), 1062–1067 (2011)CrossRefGoogle Scholar
  2. 2.
    D.I. Rinawati, D.P. Sari, B. Purwanggono, A.T. Hermawan, Environmental Impact Analysis of Batik Natural Dyes Using Life Cycle Assessment. In: AIP conference proceedings, AIP Publishing, Melville, NY, p 020044 (2017)Google Scholar
  3. 3.
    M. Mokhtar, Application of synthetic layered sodium silicate magadiite nanosheets for environmental remediation of methylene blue dye in water. Materials 10, 760 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    L.E. Cuervo, M.F. Gomes, C.V. Da Silva, A.M. de Freitas, E. Tiburtius, Degradation and ecotoxicity of dye Reactive Black 5 after reductive-oxidative process. Environ Sci Pollut Res Int 24(7), 6126–6134 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Breneman, H. Blasinski, J.E. Farrell, The Color of Water: Using Underwater Photography to Estimatewater Quality. In: Digital Photography, p. 90230R (2014)Google Scholar
  6. 6.
    Z.-M. Ni, S.-J. Xia, L.-G. Wang, F.-F. Xing, G.-X. Pan, Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: adsorption property and kinetic studies. J. Colloid Interface Sci. 316(2), 284–291 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    F.M.D. Chequer, T.M. Lizier, R. de Felício, M.V.B. Zanoni, H.M. Debonsi, N.P. Lopes, D.P. de Oliveira, The azo dye Disperse Red 13 and its oxidation and reduction products showed mutagenic potential. Toxicol. In Vitro 29(7), 1906–1915 (2015)CrossRefGoogle Scholar
  8. 8.
    B.J. Brüschweiler, C. Merlot, Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regul. Toxicol. Pharmacol. 88, 214–226 (2017)CrossRefGoogle Scholar
  9. 9.
    T.N.J.I. Edison, R. Atchudan, M.G. Sethuraman, Y.R. Lee, Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles. J. Photochem. Photobiol. B 162, 604–610 (2016)CrossRefGoogle Scholar
  10. 10.
    V. Martínek, M. Stiborová, Metabolism of carcinogenic azo dye Sudan I by rat, rabbit, minipig and human hepatic microsomes. Collect. Czechoslov. Chem. Commun. 67(12), 1883–1898 (2002)CrossRefGoogle Scholar
  11. 11.
    K. Lokesh, R. Sivakiran, Biological methods of dye removal from textile effluents—a review. J. Biochem. Technol. 3(5), 177–180 (2014)Google Scholar
  12. 12.
    X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanos. Res. Lett. 12(1), 143 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    G. Lucena, L. de Lima, L. Honório, A. de Oliveira, R. Tranquilim, E. Longo, A. de Souza, A.d..S. Maia, I. dos Santos, CaSnO 3 obtained by modified Pechini method applied in the photocatalytic degradation of an azo dye. Cerâmica 63(368), 536–541 (2017)CrossRefGoogle Scholar
  14. 14.
    E. Kusmierek, P. Mierczynski, A. Kedziora, M. Nowosielska, W. Maniukiewicz, S. Vorobyov, R. Vitkovskaya, T.P. Maniecki, Photocatalytic degradation of an azo dye over novel monometallic copper catalysts supported on fibreglass. Catal. Lett. 147(9), 2448–2461 (2017)CrossRefGoogle Scholar
  15. 15.
    G.M.D. Ferreira, G.M.D. Ferreira, M.C. Hespanhol, J. de Paula Rezende, A.C. dos Santos Pires, L.V.A. Gurgel, L.H.M. da Silva, Adsorption of red azo dyes on multi-walled carbon nanotubes and activated carbon: a thermodynamic study. Colloids Surf. A 529, 531–540 (2017)CrossRefGoogle Scholar
  16. 16.
    E. Ghasemian, Z. Palizban, Comparisons of azo dye adsorptions onto activated carbon and silicon carbide nanoparticles loaded on activated carbon. Int. J. Environ. Sci. Technol. 13(2), 501–512 (2016)CrossRefGoogle Scholar
  17. 17.
    R. Khan, U.C. Banerjee, Decolorization of Azo Dyes by Immobilized Bacteria. Biodegradation of Azo Dyes (Springer, Berlin, 2010), pp. 73–84CrossRefGoogle Scholar
  18. 18.
    Z.M. Redha, H.A. Yusuf, H.A. Ahmed, P.R. Fielden, N.J. Goddard, S.J. Baldock, A miniaturized injection-moulded flow-cell with integrated conducting polymer electrodes for on-line electrochemical degradation of azo dye solutions. Microelectron. Eng. 169, 16–23 (2017)CrossRefGoogle Scholar
  19. 19.
    Z.U.H. Khan, A. Khan, Y. Chen, A. ullah Khan, N.S. Shah, N. Muhammad, B. Murtaza, K. Tahir, F.U. Khan, P. Wan, Photo catalytic applications of gold nanoparticles synthesized by green route and electrochemical degradation of phenolic azo dyes using AuNPs/GC as modified paste electrode. J. Alloy. Compd. 725, 869–876 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J. Hazard. Mater. 181(1), 1039–1050 (2010)CrossRefGoogle Scholar
  21. 21.
    B. Maddah, A simple colorimetric kit for determination of ketamine hydrochloride in water samples. Anal. Methods 7(24), 10364–10370 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Ebrahiminezhad, S. Taghizadeh, A. Berenjian, A. Rahi, Y. Ghasemi, Synthesis and characterization of silver nanoparticles with natural carbohydrate capping using Zataria multiflora. Adv. Mater. Lett. 7(11), 939–944 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Ebrahiminezhad, S. Taghizadeh, Y. Ghasemi, Green synthesis of silver nanoparticles using Mediterranean Cypress (Cupressus sempervirens) leaf extract. Am. J. Biochem. Biotechnol. 13(1), 1–6 (2017)CrossRefGoogle Scholar
  24. 24.
    A. Ebrahiminezhad, S. Taghizadeh, A. Berenjian, F. Heidaryan Naeini, Y. Ghasemi, Green synthesis of silver nanoparticles capped with natural carbohydrates using ephedra intermedia. Nanosci Nanotechnol Asia 7(1), 104–112 (2017)Google Scholar
  25. 25.
    M. Cao, Z. Li, J. Wang, W. Ge, T. Yue, R. Li, V.L. Colvin, W.Y. William, Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci. Technol. 27(1), 47–56 (2012)CrossRefGoogle Scholar
  26. 26.
    A.K.A. Silva, A. Espinosa, J. Kolosnjaj-Tabi, C. Wilhelm, F. Gazeau, Medical applications of iron oxide nanoparticles. Iron Oxides Nat. Appl., 425–472 (2016)Google Scholar
  27. 27.
    M. Hasanzadeh, N. Shadjou, M. de la Guardia, Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC Trends Anal. Chem. 72, 1–9 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Wang, H. Zhao, G. Zhao, Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants. Appl. Catal. B 164, 396–406 (2015)CrossRefGoogle Scholar
  29. 29.
    J.M. Walker, J.M. Zaleski, A simple route to diverse noble metal-decorated iron oxide nanoparticles for catalysis. Nanoscale 8(3), 1535–1544 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    W.J. Yu, C. Liu, L. Zhang, P.X. Hou, F. Li, B. Zhang, H.M. Cheng, Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles. Adv. Sci. 3, (10) (2016)Google Scholar
  31. 31.
    A. Massoud, H. Mahmoud, Evaluation of hybrid polymeric resin containing nanoparticles of iron oxide for selective separation of In (III) from Ga (III). J. Inorg. Organomet. Polym Mater. 27(6), 1806–1815 (2017)CrossRefGoogle Scholar
  32. 32.
    Y. Bentahir, S. Elmarhoum, R. Salghi, M. Algarra, A. Ríos, M. Zougagh, Dispersed synthesis of uniform Fe3O4 magnetic nanoparticles via in situ decomposition of iron precursor along cotton fibre for Sudan dyes analysis in food samples. Food Addit. Contam. Part A 34(11), 1853–1862 (2017)CrossRefGoogle Scholar
  33. 33.
    A. Ebrahiminezhad, A. Zare-Hoseinabadi, A.K. Sarmah, S. Taghizadeh, Y. Ghasemi, A. Berenjian, Plant-mediated synthesis and applications of iron nanoparticles. Mol. Biotechnol. 60(2), 1–15 (2017)Google Scholar
  34. 34.
    D. Mishra, H. Zabel, S. Ulyanov, V. Romanov, V. Uzdin, Template assisted self-assembly of iron oxide nanoparticles: an X-ray structural analysis. J. Appl. Phys. 115(5), 054104 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    B. Palagiri, R. Chintaparty, R.R. Nagireddy, V.S.R. Imma Reddy, Influence of synthesis conditions on structural, optical and magnetic properties of iron oxide nanoparticles prepared by hydrothermal method. Phase Transit. 90(6), 578–589 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Futko, B. Shulitskii, V. Labunov, E. Ermolaeva, Simulation of the kinetics of growth of iron nanoparticles in the process of chemical vapor deposition of hydrocarbons with injection of ferrocene for the synthesis of carbon-nanotube arrays. J. Eng. Phys. Thermophys. 88(6), 1432–1441 (2015)CrossRefGoogle Scholar
  37. 37.
    Z.N. Kayani, S. Arshad, S. Riaz, S. Naseem, Synthesis of iron oxide nanoparticles by sol–gel technique and their characterization. IEEE Trans. Magn. 50(8), 1–4 (2014)Google Scholar
  38. 38.
    A. Taufiq, S. Pratapa, M. Zainuri, Various magnetic properties of magnetite nanoparticles synthesized from iron-sands by coprecipitation method at room temperature, Mater. Sci. Forum 827, 229 (2015)CrossRefGoogle Scholar
  39. 39.
    N.J. Orsini, B. Babić-Stojić, V. Spasojević, M. Calatayud, N. Cvjetićanin, G. Goya, Magnetic and power absorption measurements on iron oxide nanoparticles synthesized by thermal decomposition of Fe (acac) 3. J. Magn. Magn. Mater. 449, 286–296 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    G. Kastrinaki, S. Lorentzou, G. Karagiannakis, M. Rattenbury, J. Woodhead, A. Konstandopoulos, Parametric synthesis study of iron based nanoparticles via aerosol spray pyrolysis route. J. Aerosol Sci. 115, 96–107 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    A. Ebrahiminezhad, A. Zare-Hoseinabadi, A. Berenjian, Y. Ghasemi, Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract. Green Process. Synth. 6, 469–475 (2017)Google Scholar
  42. 42.
    A. Ebrahiminezhad, M. Zare, S. Kiyanpour, A. Berenjian, S.V. Niknezhad, Y. Ghasemi, Biosynthesis of xanthan gum coated iron nanoparticles by using Xanthomonas campestris. IET Nanobiotechnol. 12, 254–258 (2017)CrossRefGoogle Scholar
  43. 43.
    M. Seifan, A. Ebrahiminezhad, Y. Ghasemi, A.K. Samani, A. Berenjian, Amine-modified magnetic iron oxide nanoparticle as a promising carrier for application in bio self-healing concrete. Appl. Microbiol. Biotechnol. 102, 1–10 (2017)Google Scholar
  44. 44.
    R. Dinali, A. Ebrahiminezhad, M. Manley-Harris, Y. Ghasemi, A. Berenjian, Iron oxide nanoparticles in modern microbiology and biotechnology. Crit. Rev. Microbiol. 43(4), 493–507 (2017)CrossRefGoogle Scholar
  45. 45.
    S. Kianpour, A. Ebrahiminezhad, M. Mohkam, A.M. Tamaddon, A. Dehshahri, R. Heidari, Y. Ghasemi, Physicochemical and biological characteristics of the nanostructured polysaccharide-iron hydrogel produced by microorganism Klebsiella oxytoca. J. Basic Microbiol. 57(2), 132–140 (2017)CrossRefGoogle Scholar
  46. 46.
    Y.L. Raĭkher, V. Stepanov, S. Stolyar, V. Ladygina, D. Balaev, L. Ishchenko, M. Balasoiu, Magnetic properties of biomineral particles produced by bacteria Klebsiella oxytoca. Phys. Solid State 52(2), 298–305 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    S. Saif, A. Tahir, Y. Chen, Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6(11), 209 (2016)CrossRefGoogle Scholar
  48. 48.
    E.C. Njagi, H. Huang, L. Stafford, H. Genuino, H.M. Galindo, J.B. Collins, G.E. Hoag, S.L. Suib, Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27(1), 264–271 (2010)CrossRefGoogle Scholar
  49. 49.
    Z. Xiao, M. Yuan, B. Yang, Z. Liu, J. Huang, D. Sun, Plant-mediated synthesis of highly active iron nanoparticles for Cr (VI) removal: Investigation of the leading biomolecules. Chemosphere 150, 357–364 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    B.S. Inbaraj, T.-Y. Tsai, B.-H. Chen, Synthesis, characterization and antibacterial activity of superparamagnetic nanoparticles modified with glycol chitosan. Sci. Technol. Adv. Mater. 13(1), 015002 (2012)CrossRefGoogle Scholar
  51. 51.
    Z. Durmus, H. Kavas, M.S. Toprak, A. Baykal, T.G. Altınçekiç, A. Aslan, A. Bozkurt, S. Coşgun, l-lysine coated iron oxide nanoparticles: synthesis, structural and conductivity characterization. J. Alloy. Compd. 484(1), 371–376 (2009)CrossRefGoogle Scholar
  52. 52.
    T. Shahwan, S.A. Sirriah, M. Nairat, E. Boyacı, A.E. Eroğlu, T.B. Scott, K.R. Hallam, Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 172(1), 258–266 (2011)CrossRefGoogle Scholar
  53. 53.
    Z. Wang, C. Fang, M. Megharaj, Characterization of iron–polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain. Chem. Eng. 2(4), 1022–1025 (2014)CrossRefGoogle Scholar
  54. 54.
    H. Muthukumar, M. Matheswaran, Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain. Chem. Eng. 3(12), 3149–3156 (2015)CrossRefGoogle Scholar
  55. 55.
    A. Ebrahiminezhad, S. Taghizadeh, Y. Ghasemi, A. Berenjian, Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Sci. Total Environ. 621, 1527–1532 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nasrin Beheshtkhoo
    • 1
  • Mohammad Amin Jadidi Kouhbanani
    • 1
  • Amir Savardashtaki
    • 2
  • Ali Mohammad Amani
    • 1
    • 3
  • Saeed Taghizadeh
    • 2
  1. 1.Department of Medical Nanotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
  2. 2.Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
  3. 3.Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShirazIran

Personalised recommendations